精英家教網 > 高中數學 > 題目詳情
設函數f(x)=(1+x)2+ln(1+x)2
(1)求f(x)的單調區(qū)間;
(2)若當x∈[-1,e-1]時,不等式f(x)<m恒成立,求實數m的取值范圍;
(3)若關于x的方程f(x)=x2+x+a在區(qū)間[0,2]上恰好有兩個相異的實根,求實數a的取值范圍.
【答案】分析:(1)確定函數定義域,求導函數,利用導數的正負,可得f(x)的單調區(qū)間;
(2)確定函數在[-1,e-1]上的單調性,從而可得函數的最大值,不等式,即可求得實數m的取值范圍;
(3)方程f(x)=x2+x+a,即x-a+1-ln(1+x)2=0,記g(x)=x-a+1-ln(1+x)2.求導函數,確定函數在區(qū)間[0,2]上的單調性,為使f(x)=x2+x+a在[0,2]上恰好有兩個相異的實根,只須g(x)=0在[0,1]和(1,2]上各有一個實根,從而可建立不等式,由此可求實數a的取值范圍.
解答:解:(1)函數定義域為(-∞,-1)∪(-1,+∞),
因為=,
由f′(x)>0得-2<x<-1或x>0,由f′(x)<0得x<-2或-1<x<0.
∴函數的遞增區(qū)間是(-2,-1),(0,+∞),遞減區(qū)間是(-∞,-2),(-1,0).
(2)由f′(x)==0得x=0或x=-2.由(1)知,f(x)在[-1,0]上遞減,在[0,e-1]上遞增.
又f(-1)=+2,f(e-1)=e2-2,
=>0
∴e2-2>+2.所以x∈[-1,e-1]時,[f(x)]max=e2-2.故m>e2-2時,不等式f(x)<m恒成立.
(3)方程f(x)=x2+x+a,即x-a+1-ln(1+x)2=0,記g(x)=x-a+1-ln(1+x)2
所以g′(x)=1-=
由g′(x)>0,得x<-1或x>1,由g′(x)<0,得-1<x<1.
所以g(x)在[0,1]上遞減,在[1,2]上遞增,
為使f(x)=x2+x+a在[0,2]上恰好有兩個相異的實根,只須g(x)=0在[0,1]和(1,2]上各有一個實根,于是有
,∴,
∴2-2ln2<a≤3-2ln3.
點評:本題考查導數知識的運用,考查函數的單調性,考查恒成立問題,考查函數與方程思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=ax3-3x+1(x∈R),若對于任意的x∈[-1,1]都有f(x)≥0成立,則實數a的值為
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•安徽)設函數f(x)=ax-(1+a2)x2,其中a>0,區(qū)間I={x|f(x)>0}
(Ⅰ)求I的長度(注:區(qū)間(a,β)的長度定義為β-α);
(Ⅱ)給定常數k∈(0,1),當1-k≤a≤1+k時,求I長度的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•浦東新區(qū)二模)記函數f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素.
(1)判斷函數f(x)=-x+1,g(x)=2x-1是否是M的元素;
(2)設函數f(x)=log2(1-2x),求f(x)的反函數f-1(x),并判斷f(x)是否是M的元素;
(3)f(x)=
axx+b
∈M(a<0),求使f(x)<1成立的x的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

記函數f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素,
例如f(x)=-x+1,對任意x∈R,f2(x)=f(f(x))=-(-x+1)+1=x,故f(x)=-x+1∈M.
(1)設函數f(x)=log2(1-2x),判斷f(x)是否是M的元素,并求f(x)的反函數f-1(x);
(2)f(x)=
axx+b
∈M
(a<0),求使f(x)<1成立的x的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)設函數f(x)=xlog2x+(1-x)log2(1-x)(0<x<1),求f(x)的最小值.
(2)設正數P1,P2,P3,…P2n滿足P1+P2+…P2n=1,求證:P1log2P1+P2log2P2+P3log2P3+…+P2nlog2P2n≥-n.

查看答案和解析>>

同步練習冊答案