設(shè)棋子在正四面體ABCD的表面從一個(gè)頂點(diǎn)移向另外三個(gè)頂點(diǎn)是等可能的,現(xiàn)投擲骰子根據(jù)其點(diǎn)數(shù)決定棋子是否移動(dòng):若投出的點(diǎn)數(shù)是偶數(shù),棋子移動(dòng)到另一個(gè)頂點(diǎn);若投出的點(diǎn)數(shù)是奇數(shù),則棋子不動(dòng).若棋子的初始位置在頂點(diǎn)A.
求:(Ⅰ)投了2次骰子,棋子才到達(dá)頂點(diǎn)B的概率;
(Ⅱ)記投了n次骰子,棋子在頂點(diǎn)B的概率為Pn.求Pn

【答案】分析:(I)本題研究事件“投了2次骰子,棋子才到達(dá)頂點(diǎn)B”的概率,此事件包含兩種情況“第一次不動(dòng),第二次移到點(diǎn)B”、“第一次移到C或D,第二次移到B”分別計(jì)算出它們的概率,再求和既得;
(II)先根據(jù)題意判斷出Pn與Pn-1的遞推關(guān)系,通過(guò)構(gòu)造新數(shù)列求出棋子在頂點(diǎn)B的概率為Pn
解答:解:(I)根據(jù)題意得到棋子不動(dòng)的概率為,棋子移動(dòng)的概率為
投了2次骰子,棋子才到達(dá)頂點(diǎn)B有三種方式:A→A→B,A→D→B,A→C→B
故概率為P=
(II)根據(jù)題意知

所以
所以
所以
點(diǎn)評(píng):本題考查相互獨(dú)立事件的概率乘法公式,事件的分類(lèi),解題的關(guān)鍵是理解所研究的事件包含了哪些事件,且能根據(jù)概率乘法公式正確進(jìn)行計(jì)算求概率,本題的難點(diǎn)是理解事件,對(duì)事件所包含的情況進(jìn)行分類(lèi),重點(diǎn)是從事件中抽象出概率乘法模型,利用公式進(jìn)行計(jì)算.本題考查了分類(lèi)討論思想,轉(zhuǎn)化的思想及從具體事件中抽象出概率模型的能力,這也是高考考查的主要方式
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)棋子在正四面體ABCD的表面從一個(gè)頂點(diǎn)移向另外三個(gè)頂點(diǎn)是等可能的,現(xiàn)投擲骰子根據(jù)其點(diǎn)數(shù)決定棋子是否移動(dòng):若投出的點(diǎn)數(shù)是偶數(shù),棋子移動(dòng)到另一個(gè)頂點(diǎn);若投出的點(diǎn)數(shù)是奇數(shù),則棋子不動(dòng).若棋子的初始位置在頂點(diǎn)A.
求:(Ⅰ)投了2次骰子,棋子才到達(dá)頂點(diǎn)B的概率;
(Ⅱ)記投了n次骰子,棋子在頂點(diǎn)B的概率為Pn.求Pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文)設(shè)棋子在正四面體ABCD的表面從一個(gè)頂點(diǎn)移向另外三個(gè)頂點(diǎn)是等可能的.現(xiàn)投擲骰子根據(jù)其點(diǎn)數(shù)決定棋子是否移動(dòng);若擲出的點(diǎn)數(shù)是奇數(shù),則棋子不動(dòng);若擲出的點(diǎn)數(shù)是偶數(shù),棋子移動(dòng)到另一頂點(diǎn),若棋子的初始位置在頂點(diǎn)A,回答下列問(wèn)題:
(1)投了2次骰子,棋子才到達(dá)頂點(diǎn)B的概率是多少?
(2)投了3次骰子,棋子恰巧在頂點(diǎn)B的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年孝感高中高一下學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本小題滿(mǎn)分12分)

       設(shè)棋子在正四面體ABCD的表面從一個(gè)頂點(diǎn)移向另外三個(gè)頂點(diǎn)是等可能的,現(xiàn)投擲骰子根據(jù)其點(diǎn)數(shù)決定棋子是否移動(dòng):若投出的點(diǎn)數(shù)是偶數(shù),棋子移動(dòng)到另一個(gè)頂點(diǎn);若投出的點(diǎn)數(shù)是奇數(shù),則棋子不動(dòng).若棋子的初始位置在頂點(diǎn)A.

求:(Ⅰ)投了2次骰子,棋子才到達(dá)頂點(diǎn)B的概率;

(Ⅱ)記投了n次骰子,棋子在頂點(diǎn)B的概率為.求.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年孝感高中高一下學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本小題滿(mǎn)分12分)

       設(shè)棋子在正四面體ABCD的表面從一個(gè)頂點(diǎn)移向另外三個(gè)頂點(diǎn)是等可能的,現(xiàn)投擲骰子根據(jù)其點(diǎn)數(shù)決定棋子是否移動(dòng):若投出的點(diǎn)數(shù)是偶數(shù),棋子移動(dòng)到另一個(gè)頂點(diǎn);若投出的點(diǎn)數(shù)是奇數(shù),則棋子不動(dòng).若棋子的初始位置在頂點(diǎn)A.

求:(Ⅰ)投了2次骰子,棋子才到達(dá)頂點(diǎn)B的概率;

(Ⅱ)記投了n次骰子,棋子在頂點(diǎn)B的概率為.求.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案