若向量數(shù)學(xué)公式=(1,3)與向量數(shù)學(xué)公式=(-1,λ)共線,則λ的值為


  1. A.
    -3
  2. B.
    3
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
A
分析:由向量共線可得1×λ-3×(-1)=0,解之即可.
解答:∵向量=(1,3)與向量=(-1,λ)共線,
∴1×λ-3×(-1)=0,
解得λ=-3
故選A
點評:本題考查向量共線的充要條件,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
2
sin2x-cos2x-
1
2
,(x∈R)
(1)當(dāng)x∈[-
π
12
12
]時,求函數(shù)f(x)的最小值和最大值;
(2)設(shè)△ABC的內(nèi)角A,B,C的對應(yīng)邊分別為a,b,c,且c=
3
,f(C)=0,若向量
m
=(1,sinA)與向量
n
=(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
=(1,3)與向量
b
=(-1,λ)共線,則λ的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知 
m
=(
3
sinx,cosx),
n
=(cosx,-cosx),x∈R,定義函數(shù)f(x)=
m
n
-
1
2

(1)求函數(shù)f(x)的最小正周期,值域,單調(diào)增區(qū)間.
(2)設(shè)△ABC的三內(nèi)角A,B,C所對的邊分別為a、b、c,且c=
3
,f(C)=0,若向量
d
=(1,sinA)與 
e
=(2,sinB)共線,求邊a,b的值及△ABC的面積S?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinxcosx-cos2x-
1
2
,x∈R.
(1)求函數(shù)f(x)的最小值和最小正周期;
(2)已知△ABC內(nèi)角A,B,C的對邊分別為a,b,c,且c=3,f(C)=0,若向量
m
=(1,sinA)與
n
=(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若向量
a
=(1,3)與向量
b
=(-1,λ)共線,則λ的值為( 。
A.-3B.3C.-
1
3
D.
1
3

查看答案和解析>>

同步練習(xí)冊答案