如圖,在三棱錐SABC中,平面SAB⊥平面SBC,ABBCASAB.過AAFSB,垂足為F,點E,G分別是棱SASC的中點.

求證:(1)平面EFG∥平面ABC;(2)BCSA.

(1)見解析(2)見解析

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖, 已知四邊形ABCD和BCEG均為直角梯形,ADBC,CEBG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.

(1)求證: ECCD;
(2)求證:AG∥平面BDE;
(3)求:幾何體EG-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在三棱錐SABC中,SA⊥平面ABC,SA=AB=AC=BC,點D是BC邊的中點,點E是線段AD上一點,且AE=3DE,點M是線段SD上一點,
 
(1)求證:BC⊥AM;
(2)若AM⊥平面SBC,求證:EM∥平面ABS.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形ABCD為正方形,在四邊形ADPQ中,PD∥QA.又QA⊥平面ABCD,QA=AB=PD.

(1)證明:PQ⊥平面DCQ;
(2)CP上是否存在一點R,使QR∥平面ABCD,若存在,請求出R的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知△中,,平面,、分別是上的動點,且

(1)求證:不論為何值,總有平面平面;
(2)當為何值時,平面平面?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.若M是線段AD的中點,

求證:GM∥平面ABFE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P­ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DCAB,∠BAD=90°,且AB=2AD=2DC=2PD=4,EPA的中點.
 
(1)求證:DE∥平面PBC;
(2)求證:DE⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,平面平面,是等腰直角三角形,,四邊形是直角梯形,∥AE,,,分別為的中點.

(1)求異面直線所成角的大。
(2)求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

畫一個正方體ABCDA1B1C1D1,再畫出平面ACD1與平面BDC1的交線,并且說明理由.

查看答案和解析>>

同步練習冊答案