在△ABC中,已知tanA=
1
2
,tanB=
1
3
且最長邊為
5

(Ⅰ)求∠C的值;
(Ⅱ)求△ABC最短邊的長.
(Ⅰ)∵tanA=
1
2
,tanB=
1
3
,
∴tanC=-tan(A+B)=-
1
2
+
1
3
1-
1
2
×
1
3
=-1,
又∵0<C<π,∴C=
4
;
(Ⅱ)易知最短邊為AC,∵tanB=
1
3
,∠B為三角形內(nèi)角,
∴cosB=
1
tan2B+1
=
3
10
10
,sinB=
1-cos2B
=
10
10
,
由正弦定理
AC
sinB
=
AB
sinC
,即
AC
10
10
=
5
2
2
,
∴AC=1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在△ABC中,A:B:C=3:1:2,則a:b:c=(  )
A.1:2:3B.3:2:1C.1:
3
:2
D.2:1:
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在△ABC中,角A,B,C的對邊分別為a,b,c,若a2+b2=4a+2b-5,且a2=b2+c2-bc,則sinB的值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知角A,B,C是△ABC的內(nèi)角,a,b,c分別是其對邊長,向量
m
=(2
3
sin
A
2
,cos2
A
2
)
n
=(cos
A
2
,-2)
m
n

(1)求角A的大;
(2)若a=2,cosB=
3
3
,求b的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC的三個內(nèi)角分別為A,B,C.
(1)若bcosA-acosB=0,且a=2,∠C=
π
4
,求c的值;
(2)若
a
=(cosA,sinB),
b
=(cosB,sinA),
a
b
=1
,試判斷三角形的形狀?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在△ABC中,a,b,c分別是BC,AC,AB三邊的長,已知a=8,B=60°,C=75°,則b等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在△ABC中,角A,B,C所對的邊分別為a,b,c,若sin2A-sin2B=2sinB•sinC,c=3b,則角A的值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,某人在垂直于水平地面的墻面前的點處進行射擊訓(xùn)練.已知點到墻面的距離為,某目標點沿墻面的射擊線移動,此人為了準確瞄準目標點,需計算由點觀察點的仰角的大小.若的最大值       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),若,則(     )
A.B.C.2014D.2015

查看答案和解析>>

同步練習(xí)冊答案