(2012•北京模擬)函數(shù)y=log
1
3
|x|
(x∈R且x≠0)為( 。
分析:根據(jù)函數(shù)奇偶性的定義,可判斷函數(shù)為偶函數(shù),進而根據(jù)復合函數(shù)單調(diào)性“同增異減”的原則,分析內(nèi)外函數(shù)的單調(diào)性,可得答案.
解答:解:∵f(x)=log
1
3
|x|

f(-x)=log
1
3
|-x|
=log
1
3
|x|
=f(x)
∴函數(shù)y=log
1
3
|x|
(x∈R且x≠0)為偶函數(shù)
令u=|x|,則y=log
1
3
u

在(-∞,0)上u=|x|為減函數(shù),此時y=log
1
3
u
為減函數(shù),則函數(shù)y=log
1
3
|x|
為增函數(shù);
在(0,+∞)上u=|x|為增函數(shù),此時y=log
1
3
u
為減函數(shù),則函數(shù)y=log
1
3
|x|
為減函數(shù);
故選C
點評:本題考查的知識點是函數(shù)的奇偶性,對數(shù)函數(shù)的概念,對數(shù)函數(shù)的圖象,對數(shù)函數(shù)的單調(diào)性,其中復合函數(shù)的單調(diào)性的判定方法是解答的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•北京模擬)已知a、b、c、d是公比為2的等比數(shù)列,則
2a+b
2c+d
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•北京模擬)函數(shù)y=
log
2
3
(3x-2)
的定義域為
2
3
,1]
2
3
,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•北京模擬)如圖,在四棱錐P-ABCD中,PA⊥平面AC,且四邊形ABCD是矩形,則該四棱錐的四個側(cè)面中是直角三角形的有(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•北京模擬)在數(shù)列{an}中,a1=
3
,an+1=
1+
a
2
n
-1
an
(n∈N*)
.數(shù)列{bn}滿足0<bn
π
2
,且 an=tanbn(n∈N*).
(1)求b1,b2的值;
(2)求數(shù)列{bn}的通項公式;
(3)設(shè)數(shù)列{bn}的前n項和為Sn.若對于任意的n∈N*,不等式Sn≥(-1)nλbn恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•北京模擬)甲、乙、丙、丁四個人進行傳球練習,每次球從一個人的手中傳入其余三個人中的任意一個人的手中.如果由甲開始作第1次傳球,經(jīng)過n次傳球后,球仍在甲手中的所有不同的傳球種數(shù)共有an種.
(如,第一次傳球模型分析得a1=0.)
(1)求 a2,a3的值;
(2)寫出 an+1與 an的關(guān)系式(不必證明),并求 an=f(n)的解析式;
(3)求 
anan+1
的最大值.

查看答案和解析>>

同步練習冊答案