3.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,PA⊥底面ABCD,M是棱PD的中點(diǎn),且PA=AB=AC=2,BC=2$\sqrt{2}$. 
(Ⅰ)求證:CD⊥平面PAC;
(Ⅱ)求二面角M-AB-C的大。

分析 (I)由勾股定理得出CD⊥AC,由PA⊥平面ABCD得出CD⊥PA,故CD⊥平面PAC;
(II)以A為原點(diǎn)建立坐標(biāo)系,分別求出平面MAB和平面ABC的法向量,求出法向量的夾角即可得出二面角的大。

解答 解:(Ⅰ)連結(jié)AC,
∵在△ABC中,AB=AC=2,BC=2$\sqrt{2}$,
∴BC2=AB2+AC2,∴AB⊥AC,
∵AB∥CD,∴AC⊥CD,
又∵PA⊥底面ABCD,∴PA⊥CD,
∵AC∩PA=A,∴CD⊥平面PAC;
(Ⅱ)如圖建立空間直角坐標(biāo)系,
則A(0,0,0),P(0,0,2),B(2,0,0),C(0,2,0),D(-2,2,0),
∵M(jìn)是棱PD的中點(diǎn),∴M(-1,1,1),∴$\overrightarrow{AM}$=(-1,1,1),$\overrightarrow{AB}$=(2,0,0).
設(shè)$\overrightarrow{n}$=(x,y,z)為平面MAB的法向量,
∴$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AM}=0}\\{\overrightarrow{n}•\overrightarrow{AB}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{-x+y+z=0}\\{2x=0}\end{array}\right.$,令y=1,得$\overrightarrow{n}$=(0,1,-1),
∵PA⊥平面ABCD,
∴$\overrightarrow{AP}$=(0,0,2)是平面ABC的一個法向量.
∴cos<$\overrightarrow{n}$,$\overrightarrow{AP}$>=$\frac{\overrightarrow{n}•\overrightarrow{AP}}{|\overrightarrow{n}||\overrightarrow{AP}|}$=$\frac{-2}{2×\sqrt{2}}$=-$\frac{\sqrt{2}}{2}$.
∵二面角M-AB-C 為銳二面角,
∴二面角M-AB-C的大小為$\frac{π}{4}$.

點(diǎn)評 本題考查了線面垂直的判定,空間向量的應(yīng)用與二面角的計算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)解不等式|x-1|+|x-4|≥5.
(2)求函數(shù)y=|x-1|+|x-4|+x2-4x的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列命題是假命題的是(  )
A.?φ∈R,函數(shù)f(x)=sin(2x+φ)都不是偶函數(shù)
B.?α,β∈R,使cos(α+β)=cosα+cosβ
C.向量$\overrightarrow a=(2,-1)$,$\overrightarrow b=(-3,0)$,則$\overrightarrow a$在$\overrightarrow b$方向上的投影為-2
D.“|x|≤1”是“x<1”的既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\frac{1}{2}$(a-x)ex(a>0),存在x∈[0,2],使得f(x)≥e,則實(shí)數(shù)a的取值范圍是( 。
A.[3,+∞)B.[2+ln2,+∞)C.[2e,+∞)D.[2+$\frac{2}{e}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.給出下列結(jié)論:
①若實(shí)數(shù)x,y∈[-1,1],則滿足x2+y2≥1的概率為$\frac{π}{4}$;
②在△ABC中,“A>B”是“sinA>sinB”的充要條件;
③命題“A1,A2是互斥事件”是命題“A1,A2是對立事件”的必要不充分條件;
④若a,b是實(shí)數(shù),則“a>1且b>1”是“a+b>2且ab>1”的充分不必要條件;
⑤若x+y>2,則x>1或y>1.
其中正確結(jié)論的序號是②③④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.f(x)=x2-2x+4的單調(diào)減區(qū)間為(-∞,1],值域為[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若$\int_1^2$(3x2-2ax)dx=4$\int_0^{\frac{π}{12}}$cos2xdx,則a等于( 。
A.-1B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.$\overline z$是z的共軛復(fù)數(shù),若z+$\overline z$=2,(z-$\overline z$)i=2(i為虛數(shù)單位),則復(fù)數(shù)z的虛部是( 。
A.-iB.iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知扇形的面積為2,扇形圓心角的弧度數(shù)是4,則扇形的周長是多少.

查看答案和解析>>

同步練習(xí)冊答案