在矩形ABCD中,已知AD=2AB=2,點(diǎn)E是AD得中點(diǎn),將△DEC沿CE折起到△D′EC的位置,使平面D′EC⊥平面BEC.
(1)證明:BE⊥CD′;
(2)求點(diǎn)E到平面D′EC的距離.
分析:(1)利用面面垂直的性質(zhì)證明線面垂直,即BE⊥面D'EC,利用線面垂直的性質(zhì),可得結(jié)論;
(2)設(shè)點(diǎn)E到平面D′BC的距離為h先計(jì)算V三棱錐B-D′EC=
1
3
×
1
2
×
2
=
2
6
,V三棱錐E-D′BC=
1
3
×
3
2
×h,利用V三棱錐E-D′BC=V三棱錐B-D′EC,即可求得結(jié)論.
解答:(1)證明:∵AD=2AB=2,E是AD的中點(diǎn),
∴△BAE,△CDE是等腰直角三角形,BE⊥EC.…(3分)
∵平面D'EC⊥平面BEC,面D'EC∩面BEC=EC
∴BE⊥面D'EC,
∵CD′?面D'EC,
∴BE⊥CD′.             …(7分)
(2)解:設(shè)點(diǎn)E到平面D′BC的距離為h.
由(1)可知BE⊥面D'EC,且BE=
2
,
∵S△D′EC=S△DEC=
1
2
×1×1=
1
2
,∴V三棱錐B-D′EC=
1
3
×
1
2
×
2
=
2
6
.                           …(9分)
∵BE⊥面D'EC,D′C?面D'EC,∴BE⊥D'C.
在△D′BC中,BC=2,D'C=DC=1,∴D′B=
3
,
∴S△D′BC=
1
2
×
3
×1=
3
2
,∴V三棱錐E-D′BC=
1
3
×
3
2
×h     …(12分)
由V三棱錐E-D′BC=V三棱錐B-D′EC,得h=
6
3

所以,點(diǎn)E到平面D′BC的距離為
6
3
.      …(14分)
點(diǎn)評(píng):本題考查面面垂直的性質(zhì)證明線面垂直,考查點(diǎn)到面的距離的計(jì)算,掌握面面垂直的性質(zhì)、線面垂直的體積證明方法,正確求體積是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在矩形ABCD中,已知AD=6,AB=2,E、F為AD的兩個(gè)三等分點(diǎn),AC和BF交于點(diǎn)G,△BEG的外接圓為⊙H.以DA所在直線為x軸,以DA中點(diǎn)O為坐標(biāo)原點(diǎn),建立如圖所示的平面直角坐標(biāo)系.
(1)求以F、E為焦點(diǎn),DC和AB所在直線為準(zhǔn)線的橢圓的方程.
(2)求⊙H的方程.
(3)設(shè)點(diǎn)P(0,b),過(guò)點(diǎn)P作直線與⊙H交于M,N兩點(diǎn),若點(diǎn)M恰好是線段PN的中點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,已知AB=3,AD=1,E、F分別是AB的兩個(gè)三等分點(diǎn),AC,DF相交于點(diǎn)G,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系:
(1)若動(dòng)點(diǎn)M到D點(diǎn)距離等于它到C點(diǎn)距離的兩倍,求動(dòng)點(diǎn)M的軌跡圍成區(qū)域的面積;
(2)證明:E G⊥D F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在矩形ABCD中,已知AB=a,BC=b(a>b),在AB、AD、CD、CB上分別截取AE、AH、CG、CF都等于x,
(1)將四邊形EFGH的面積S表示成x的函數(shù),并寫出函數(shù)的定義域;
(2)當(dāng)x為何值時(shí),四邊形EFGH的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,已知AB=3AD,E,F(xiàn)為AB的兩個(gè)三等分點(diǎn),AC,DF交于點(diǎn)G;
(I)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,證明:EG⊥DF;
(II)設(shè)點(diǎn)E關(guān)于直線AC的對(duì)稱點(diǎn)為E',問(wèn)點(diǎn)E'是否在直線DF上,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案