已知函數(shù)f(x)=
1+ln(x+1)
x
.(x>0)
(1)函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(2)若當x>0時,f(x)>
k
x+1
恒成立,求正整數(shù)k的最大值.
分析:(1)直接求函數(shù)f(x)的導(dǎo)函數(shù),化簡導(dǎo)函數(shù)分子,判斷正負即可;
(2)可以先利用特殊值x=1先嘗試k的可能值,然后用導(dǎo)數(shù)的方法予以證明;
    或者構(gòu)造新函數(shù)將問題轉(zhuǎn)化為求函數(shù)最值,利用函數(shù)的導(dǎo)數(shù)去研究函數(shù)的最值即可.
解答:解:(1)函數(shù)f(x)=
1+ln(x+1)
x

∴f′(x)=
1
x2
[
x
x+1
-1-ln(x+1)]=-
1
x2
[
x
x+1
+ln(x+1)].
由x>0,x2>0,
x
x+1
>0,ln(x+1)>0,得f′(x)<0.
因此函數(shù)f(x)在區(qū)間(0,+∞)上是減函數(shù).
(2)解法一:當x>0時,f(x)>
k
x+1
恒成立,令x=1有k<2[1+ln2].
又k為正整數(shù).則k的最大值不大于3.
下面證明當k=3時,f(x)>
k
x+1
(x>0)恒成立.
即證明x>0時(x+1)ln(x+1)+1-2x>0恒成立.
令g(x)=(x+1)ln(x+1)+1-2x,
則g′(x)=ln(x+1)-1.
當x>e-1時,g′(x)>0;當0<x<e-1時,g′(x)<0.
∴當x=e-1時,g(x)取得最小值g(e-1)=3-e>0.
∴當x>0時,(x+1)ln(x+1)+1-2x>0恒成立.
因此正整數(shù)k的最大值為3.
解法二:當x>0時,f(x)>
k
x+1
恒成立.
即h(x)=
(x+1)[1+ln(x+1)]
x
>k對x>0恒成立.
即h(x)(x>0)的最小值大于k.
由h′(x)=
x-1-ln(x+1)
x2
,記Φ(x)=x-1-ln(x+1).(x>0)
則Φ′(x)=
x
x+1
>0,
∴Φ(x)在(0,+∞)上連續(xù)遞增.
又Φ(2)=1-ln3<0,Φ(3)=2-2ln2>0,
∴Φ(x)=0存在惟一實根a,且滿足:a∈(2,3),a=1+ln(a+1),
由x>a時,Φ(x)>0,h′(x)>0;0<x<a時,Φ(x)<0,h′(x)<0知:
h(x)(x>0)的最小值為h(a)=
(a+1)[1+ln(a+1)]
a
=a+1∈(3,4).
因此正整數(shù)k的最大值為3.
點評:本題考查函數(shù)的導(dǎo)數(shù)在最大值、最小值中的應(yīng)用,以及函數(shù)的導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,同時轉(zhuǎn)化思想是解決此類恒成立問題的“良方”.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),則實數(shù)x的取值范圍是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1,x∈Q
0,x∉Q
,則f[f(π)]=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx(a>0)

(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(2)當a=1時,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)當a=1時,求證對任意大于1的正整數(shù)n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,則下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+logax(a>0,a≠1),滿足f(9)=3,則f-1(log92)的值是( 。

查看答案和解析>>

同步練習(xí)冊答案