2.函數(shù)$f(x)={(\frac{1}{2})^{2{x^2}-3x+1}}$的增區(qū)間是$(-∞,\frac{3}{4}]$.

分析 令t=2x2-3x+1,求出其單調(diào)性區(qū)間,則g(t)=($\frac{1}{2}$)t是單調(diào)遞減,根據(jù)復合函數(shù)的單調(diào)性可得增區(qū)間.

解答 解:函數(shù)$f(x)={(\frac{1}{2})^{2{x^2}-3x+1}}$,
令t=2x2-3x+1,
則函數(shù)f(x)轉(zhuǎn)化為g(t)=($\frac{1}{2}$)t是單調(diào)遞減,
函數(shù)t=2x2-3x+1,
開口向上,對稱軸x=$\frac{3}{4}$,
其單調(diào)性區(qū)間,單調(diào)增區(qū)間為:[$\frac{3}{4}$,+∞)單調(diào)減區(qū)間為(-∞,$\frac{3}{4}$];
根據(jù)復合函數(shù)的單調(diào)性“同增異減”可得函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,$\frac{3}{4}$];
故答案為:$(-∞,\frac{3}{4}]$.

點評 本題考查了復合函數(shù)的單調(diào)性的求法.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=asinx在點(0,0)處的切線方程為y=2x,則a=( 。
A.1B.2C.4D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知${(x+1)^n}={a_0}+{a_1}(x-1)+{a_2}{(x-1)^2}+…+{a_n}{(x-1)^n}$,(其中n∈N*
(1)求a0及sn=a1+a2+…+an;
(2)試比較sn與(n-2)•2n+2n2的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在△ABC中,∠ABC=90°,AB=2$\sqrt{3}$,BC=2,P為△ABC內(nèi)一點,∠BPC=90°
(1)若PB=1,求PA;
(2)若∠APB=120°,設∠PBA=α,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知直線3x+4y+17=0與圓x2+y2-4x+4y-17=0相交于A,B,則|AB|=8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.函數(shù)f(x)=ex(2-|x|)-1的零點個數(shù)為( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設向量$\overrightarrow a$,$\overrightarrow b$滿足$|\overrightarrow a|=1$,$|\overrightarrow a+\overrightarrow b|=\sqrt{3}$,$\overrightarrow a•(\overrightarrow a+\overrightarrow b)=0$,則$|2\overrightarrow a-\overrightarrow b|$=( 。
A.2B.$2\sqrt{3}$C.4D.$4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設拋物線y2=8x的焦點為F,M是拋物線上一點,N(2,2),則|MF|+|MN|的取值范圍是( 。
A.(0,4]B.[4,+∞)C.(0,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,曲線C由上半橢圓C1:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0,y≥0)和部分拋物線C2:y=-x2+1(y≤0)連接而成,C1、C2的公共點為A,B,其中C1的離心率為$\frac{\sqrt{3}}{2}$.
(1)求a,b的值;
(2)過點B的直線l與C1,C2分別交于P,Q(均異于點A,B),若AP⊥AQ,求直線l的方程.

查看答案和解析>>

同步練習冊答案