【題目】在邊長(zhǎng)為4的菱形ABCD中,∠DAB=60°,點(diǎn)E,F(xiàn)分別是邊CD,CB的中點(diǎn),AC∩EF=O,沿EF將△CEF翻折到△PEF,連接PA,PB,PD,得到如圖的五棱錐,且
(1)求證:BD⊥平面POA;
(2)求二面角B﹣AP﹣O的余弦值.

【答案】
(1)證明:∵點(diǎn)E,F(xiàn)分別為CD,CB的中點(diǎn),∴BD∥EF,

∵菱形ABCD的對(duì)角線互相垂直,

∴BD⊥AC,∴EF⊥AC,∴EF⊥AO,EF⊥PO,

∵AO平面POA,PO平面POA,AO∩PO=O,

∴EF⊥平面POA,∴BD⊥平面POA.


(2)解:設(shè)AO∩BD=H,連接BO,∵∠DAB=60°,∴△ABD為等邊三角形,

,

在Rt△BHO中, ,

在△PBO中,BO2+PO2=10=PB2,∴PO⊥BO,

∵PO⊥EF,EF∩BO=O,EF平面BFED,∴PO⊥平面BFED,

以O(shè)為原點(diǎn),OF所在直線為x軸,AO所在直線y軸,OP所在直線為z軸,建立空間直角坐標(biāo)系O﹣xyz,

,

設(shè)平面PAB的法向量為 =(x,y,z),

,取y=1,得 =(﹣ ),

∵BD⊥平面POA,AO∩BD=H,∴平面PAO的一個(gè)法向量為 =(﹣2,0,0),

設(shè)二面角B﹣AP﹣O的平面角為θ,

則cosθ= = = ,

∴二面角B﹣AP﹣O的余弦值為


【解析】(1)推導(dǎo)出BD∥EF,BD⊥AC,EF⊥AC,從而EF⊥AO,EF⊥PO,由此能證明BD⊥平面POA.(2)設(shè)AO∩BD=H,連接BO,以O(shè)為原點(diǎn),OF所在直線為x軸,AO所在直線y軸,OP所在直線為z軸,建立空間直角坐標(biāo)系O﹣xyz,利用向量法能求出二面角B﹣AP﹣O的余弦值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面垂直的判定的相關(guān)知識(shí),掌握一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代有著輝煌的數(shù)學(xué)研究成果.《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、…、《輯古算經(jīng)》等算經(jīng)10部專著,有著十分豐富多彩的內(nèi)容,是了解我國(guó)古代數(shù)學(xué)的重要文獻(xiàn).這10部專著中有7部產(chǎn)生于魏晉南北朝時(shí)期.某中學(xué)擬從這10部名著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部名著中至少有一部是魏晉南北朝時(shí)期的名著的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】祖沖之之子祖暅?zhǔn)俏覈?guó)南北朝時(shí)代偉大的科學(xué)家,他在實(shí)踐的基礎(chǔ)上提出了體積計(jì)算的原理:“冪勢(shì)既同,則積不容異”.意思是,如果兩個(gè)等高的幾何體 在同高處截得的截面面積恒等,那么這兩個(gè)幾何體的體積相等.此即祖暅原理.利用這個(gè)原理求球的體積時(shí),需要構(gòu)造一個(gè)滿足條件的幾何體,已知該幾何體三視圖 如圖所示,用一個(gè)與該幾何體的下底面平行相距為 h(0<h<2) 的平面截該幾何體,則截面面積為 ( )


A.
B.
C.
D.π(4-h2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的偶函數(shù)f(x)滿足f(x)+f(x﹣1)=0,且在[﹣5,﹣4]上是增函數(shù),A,B是銳角三角形的兩個(gè)內(nèi)角,則(
A.f(sinA)>f(cosB)
B.f(sinA)<f(cosB)
C.f(sinA)>f(sinB)
D.f(cosA)>f(cosB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的不等式 (其中a>0).
(1)當(dāng)a=3時(shí),求不等式的解集;
(2)若不等式有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)綜》中有這樣一個(gè)問(wèn)題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見(jiàn)次日行里數(shù),請(qǐng)公仔仔細(xì)算相還”.其大意為:“有一個(gè)走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地”.則該人第五天走的路程為(
A.48里
B.24里
C.12里
D.6里

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】傳統(tǒng)文化就是文明演化而匯集成的一種反映民族特質(zhì)和風(fēng)貌的民族文化,是民族歷史上各種思想文化、觀念形態(tài)的總體表征.教育部考試中心確定了2017年普通高考部分學(xué)科更注重傳統(tǒng)文化考核.某校為了了解高二年級(jí)中國(guó)數(shù)學(xué)傳統(tǒng)文化選修課的教學(xué)效果,進(jìn)行了一次階段檢測(cè),并從中隨機(jī)抽取80名同學(xué)的成績(jī),然后就其成績(jī)分為A、B、C、D、E五個(gè)等級(jí)進(jìn)行數(shù)據(jù)統(tǒng)計(jì)如下:

成績(jī)

人數(shù)

A

9

B

12

C

31

D

22

E

6

根據(jù)以上抽樣調(diào)查數(shù)據(jù),視頻率為概率.
(1)若該校高二年級(jí)共有1000名學(xué)生,試估算該校高二年級(jí)學(xué)生獲得成績(jī)?yōu)锽的人數(shù);
(2)若等級(jí)A、B、C、D、E分別對(duì)應(yīng)100分、80分、60分、40分、20分,學(xué)校要求“平均分達(dá)60分以上”為“教學(xué)達(dá)標(biāo)”,請(qǐng)問(wèn)該校高二年級(jí)此階段教學(xué)是否達(dá)標(biāo)?
(3)為更深入了解教學(xué)情況,將成績(jī)等級(jí)為A、B的學(xué)生中,按分層抽樣抽取7人,再?gòu)闹腥我獬槿?名,求抽到成績(jī)?yōu)锳的人數(shù)X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )圖象如圖所示,則下列關(guān)于函數(shù) f (x)的說(shuō)法中正確的是(
A.對(duì)稱軸方程是x= +kπ(k∈Z)
B.對(duì)稱中心坐標(biāo)是( +kπ,0)(k∈Z)
C.在區(qū)間(﹣ , )上單調(diào)遞增
D.在區(qū)間(﹣π,﹣ )上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x(a+lnx)有極小值﹣e2 . (Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若k∈Z,且 對(duì)任意x>1恒成立,求k的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案