數(shù)列{xn}滿足x1=0,xn+1=-x2n+xn+c(n∈N*)。
(Ⅰ)證明:{xn}是從遞減數(shù)列的充分必要條件是c<0;
(Ⅱ)求c的取值范圍,使{xn}是遞增數(shù)列。
解:(I )必要條件            
當(dāng)時(shí),數(shù)列是單調(diào)遞減數(shù)列          
充分條件          
數(shù)列是單調(diào)遞減數(shù)列          
得:數(shù)列是單調(diào)遞減數(shù)列的充分必要條件是
(II)由(I)得:c≥0        
①當(dāng)時(shí),,不合題意    
②當(dāng)時(shí),                          

當(dāng)時(shí),同號(hào),
       
 
當(dāng)時(shí),存在,使異號(hào)
與數(shù)列是單調(diào)遞減數(shù)列矛盾
得:當(dāng)時(shí),數(shù)列是單調(diào)遞增數(shù)列。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax+b
cx2+1
(a,b,c為常數(shù),a≠0).
(Ⅰ)若c=0時(shí),數(shù)列an滿足條件:點(diǎn)(n,an)在函數(shù)f(x)=
ax+b
cx2+1
的圖象上,求an的前n項(xiàng)和Sn;
(Ⅱ)在(Ⅰ)的條件下,若a3=7,S4=24,p,q∈N*(p≠q),證明:Sp+q
1
2
(S2p+S2q)
;
(Ⅲ)若c=1時(shí),f(x)是奇函數(shù),f(1)=1,數(shù)列xn滿足x1=
1
2
,xn+1=f(xn),求證:
(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
+…+
(xn-xn+1)2
xnxn+1
5
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•四川)記[x]為不超過(guò)實(shí)數(shù)x的最大整數(shù),例如,[2]=2,[1.5]=1,[-0.3]=-1.設(shè)a為正整數(shù),數(shù)列{xn}滿足x1=a,xn+1=[
xn+[
a
xn
]
2
](n∈N*)
,現(xiàn)有下列命題:
①當(dāng)a=5時(shí),數(shù)列{xn}的前3項(xiàng)依次為5,3,2;
②對(duì)數(shù)列{xn}都存在正整數(shù)k,當(dāng)n≥k時(shí)總有xn=xk;
③當(dāng)n≥1時(shí),xn
a
-1
;
④對(duì)某個(gè)正整數(shù)k,若xk+1≥xk,則xk=[
a
]

其中的真命題有
①③④
①③④
.(寫(xiě)出所有真命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3xx+3
,數(shù)列{xn}滿足x1=1,xn+1=f(xn),n∈N*
(1)求數(shù)列{xn}的通項(xiàng)公式.
(2)記an=xnxn+1,Sn=a1+a2+…+an,n∈N*,求證:Sn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•荊州模擬)數(shù)列{xn}滿足x1=
1
3
,且n≥2時(shí),xn=
xn-1
2-xn-1
,若對(duì)任意n∈N*,都有|x2-x1|+|x3-x2|+…+|xn+1-xn|<a成立,則實(shí)數(shù)a的取值范圍是
[
1
3
,+∞)
[
1
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)在(-1,1)有意義,f(
1
2
)=-1且任意的x、y∈(-1,1)都有f(x)+f(y)=f(
x+y
1+xy
),若數(shù)列{xn}滿足x1=
1
2
,xn+1=
2xn
1+
x
2
n
(n∈N*),求f(xn).

查看答案和解析>>

同步練習(xí)冊(cè)答案