【題目】某幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為_____.
【答案】
【解析】
作出幾何體的直觀圖,建立空間直角坐標(biāo)系,求出外接球的球心坐標(biāo),從而可得外接球的半徑,再計(jì)算出外接球的表面積.
由三視圖可知幾何體為四棱錐E﹣ABCD,直觀圖如圖所示:
其中,BE⊥平面ABCD,BE=4,AB⊥AD,AB=,
C到AB的距離為2,C到AD的距離為2,
以A為原點(diǎn),以AB,AD,及平面ABCD過A的垂線為坐標(biāo)軸建立空間直角坐標(biāo)系A﹣xyz,
則A(0,0,0),B(,0,0),C(2,2,0),D(0,4,0),E(,0,4).
設(shè)外接球的球心為M(x,y,z),則MA=MB=MC=MD=ME,
∴x2+y2+z2=y2+(x﹣)2+z2=(y﹣2)2+(x﹣2)2+z2=(y﹣4)2+x2+z2=y2+(x﹣)2+(z﹣4)2,
解得y=2,x=,z=2.
∴外接球的半徑r=MA==,
∴外接球的表面積S=4πr2=34π.
故答案為:34π
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形所在平面與半圓弧所在平面垂直,是上異于,的點(diǎn).
(1)證明:平面平面;
(2)在線段上是否存在點(diǎn),使得平面?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在研究吸煙與患肺癌的關(guān)系中,通過收集數(shù)據(jù)、整理分析數(shù)據(jù)得“吸煙與患肺癌有關(guān)”的結(jié)論,并且在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為這個(gè)結(jié)論是成立的,下列說法中正確的是( )
A.100個(gè)吸煙者中至少有99人患有肺癌
B.1個(gè)人吸煙,那么這個(gè)人有99%的概率患有肺癌
C.在100個(gè)吸煙者中一定有患肺癌的人
D.在100個(gè)吸煙者中可能一個(gè)患肺癌的人也沒有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列選項(xiàng)中,說法正確的是( )
A.命題“,”的否定為“,”;
B.命題“在中,,則”的逆否命題為真命題;
C.已知、m是兩條不同的直線,是個(gè)平面,若,則;
D.已知定義在R上的函數(shù),則“為奇函數(shù)”是“”的充分必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、分別是橢圓的左、右焦點(diǎn).若是該橢圓上的一個(gè)動點(diǎn),的最大值為1.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為(與不重合),則直線與軸是否交于一個(gè)定點(diǎn)?若是,請寫出定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接年北京冬季奧運(yùn)會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學(xué)生中隨機(jī)抽取了名學(xué)生,將他們的比賽成績(滿分為分)分為組:,,,,,,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)記表示事件“從參加冬奧知識競賽活動的學(xué)生中隨機(jī)抽取一名學(xué)生,該學(xué)生的比賽成績不低于分”,估計(jì)的概率;
(3)在抽取的名學(xué)生中,規(guī)定:比賽成績不低于分為“優(yōu)秀”,比賽成績低于分為“非優(yōu)秀”.請將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“比賽成績是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在極坐標(biāo)系中,,,,,,弧,所在圓的圓心分別是,,曲線是弧,曲線是線段,曲線是線段,曲線是弧.
(1)分別寫出,,,的極坐標(biāo)方程;
(2)曲線由,,,構(gòu)成,若點(diǎn),(),在上,則當(dāng)時(shí),求點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題,其中正確的命題有( )
A.設(shè)具有相關(guān)關(guān)系的兩個(gè)變量x,y的相關(guān)系數(shù)為r,則越接近于0,x,y之間的線性相關(guān)程度越高
B.隨機(jī)變量,若,則
C.公共汽車上有10位乘客,沿途5個(gè)車站,乘客下車的可能方式有種
D.回歸方程為中,變量y與x具有正的線性相關(guān)關(guān)系,變量x增加1個(gè)單位時(shí),y平均增加0.85個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若,證明:;
(3)若,直線與曲線相切,證明:.
(參考數(shù)據(jù):,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com