【題目】設(shè)函數(shù)f(x)|2x1||x4|.

(1)解不等式f(x)>2

(2)若函數(shù)f(x)≥m恒成立,m的最大整數(shù)值.

【答案】(1)見解析;(2)1;(3)

【解析】試題分析:

1)利用絕對(duì)值的定義去絕對(duì)值符號(hào),化函數(shù)為分段函數(shù)形式,然后分段解不等式可得結(jié)論,也可作出函數(shù)的圖象與直線,從圖象觀察出不等式的解;

2作出函數(shù)圖象可求得的最小值,從而可得的范圍,在其中取最大整數(shù)

試題解析:

(1)y|2x1||x4|,則

y

作出函數(shù)y|2x1||x4|的圖像,它與直線y2的交點(diǎn)為(7,2)(2)

所以|2x1||x4|>2的解集為(,-7)(,+∞)

(2)由函數(shù)y|2x1||x4|的圖像可知,當(dāng)x=-時(shí),y|2x1||x4|取得最小值-. 由題m<=-9/2,m的最大整數(shù)值-5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+a2.

(I)若f(x)在x=1處有極值10,求a,b的值;

(II)若當(dāng)a=-1時(shí),f(x)<0在x∈[1,2]恒成立,求b的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為

1)求曲線的直角坐標(biāo)方程并指出其形狀;

2)設(shè)是曲線上的動(dòng)點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與反比例函數(shù)的圖象交于B、C兩點(diǎn),B(2,m)且m<2,正方形ABCD的頂點(diǎn)A、D在坐標(biāo)軸上。

⑴ 求, 的值;

⑵ 直接寫出時(shí), 的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面為菱形 且∠ABC=120°,PA⊥底面ABCD,AB=2,PA=,

(1)求證:平面PBD⊥平面PAC;

(2)求三棱錐P--BDC的體積。

(3)在線段PC上是否存在一點(diǎn)E,使PC⊥平面EBD成立.如果存在,求出EC的長;如果不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知)的圖像關(guān)于坐標(biāo)原點(diǎn)對(duì)稱。

1)求的值,并求出函數(shù)的零點(diǎn);

2)若函數(shù)內(nèi)存在零點(diǎn),求實(shí)數(shù)的取值范圍;

3)設(shè),若不等式上恒成立求滿足條件的最小整數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】上周某校高三年級(jí)學(xué)生參加了數(shù)學(xué)測試,年部組織任課教師對(duì)這次考試進(jìn)行成績分析.現(xiàn)從中抽取80名學(xué)生的數(shù)學(xué)成績(均為整數(shù))的頻率分布直方圖如圖所示.

(Ⅰ)估計(jì)這次月考數(shù)學(xué)成績的平均分和眾數(shù);

(Ⅱ)假設(shè)抽出學(xué)生的數(shù)學(xué)成績在段各不相同,且都超過94分.若將頻率視為概率,現(xiàn)用簡單隨機(jī)抽樣的方法,從95,96,97,98,99,100這6個(gè)數(shù)字中任意抽取2個(gè)數(shù),有放回地抽取3次,記這3次抽取中恰好有兩名學(xué)生的數(shù)學(xué)成績的次數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:如果函數(shù)在定義域內(nèi)給定區(qū)間上存在),滿足,則稱函數(shù)上的“平均值函數(shù)”, 是它的一個(gè)均值點(diǎn).如上的平均值函數(shù),0就是他的均值點(diǎn).

(1)判斷函數(shù)在區(qū)間上是否為平均值函數(shù)?若是,求出它的均值點(diǎn);若不是,請說明理由;

(2)若函數(shù)是區(qū)間上的平均值函數(shù),試確定實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長方形ABCD中,AB=1,AD=。現(xiàn)將長方形沿對(duì)角線BD折起,使AC=a,得到一個(gè)四面體ABCD,如圖所示.

(1)試問:在折疊的過程中,異面直線AB與CD,AD與BC能否垂直?若能垂直,求出相應(yīng)的a值;若不垂直,請說明理由.

(2)當(dāng)四面體ABCD的體積最大時(shí),求二面角ACDB的余弦值.

查看答案和解析>>

同步練習(xí)冊答案