【題目】甲、乙、丙三人每人有一張游泳比賽的門票,已知每張票可以觀看指定的三場比賽中的任一場(三場比賽時間不沖突),甲乙二人約定他們會觀看同一場比賽并且他倆觀看每場比賽的可能性相同,又已知丙觀看每一場比賽的可能性也相同,且甲乙的選擇與丙的選擇互不影響.

(1)求三人觀看同一場比賽的概率;

(2)記觀看第一場比賽的人數(shù)是,求的分布列和期望.

【答案】(1);(2)見解析.

【解析】試題分析:

(1)利用事件的獨立性結(jié)合題意求解概率即可.

(2)在(1)的基礎上進一步進行計算, 所有的取值為 ,寫出分布列,求解數(shù)學期望即可.

試題解析:

(1)記事件 “三人觀看同一場比賽”,根據(jù)條件,由獨立性可得,

(2)根據(jù)條件可得分布列如下:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,四邊形中, , ,將四邊形沿著折疊,得到圖2所示的三棱錐,其中

(1)證明:平面平面;

(2)若中點,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】太極圖是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相互統(tǒng)一的和諧美.定義:能夠?qū)A的周長和面積同時等分成兩部分的函數(shù)稱為圓的一個“太極函數(shù)”.下列有關說法中:

①對圓的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);

②函數(shù)是圓的一個太極函數(shù);

③存在圓,使得是圓的太極函數(shù);

④直線所對應的函數(shù)一定是圓的太極函數(shù).

所有正確說法的序號是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù))將的圖象向右平移兩個單位,得到函數(shù)的圖象.

(1)求函數(shù)的解析式;

(2)若方程上有且僅有一個實根,求的取值范圍;

(3)若函數(shù)的圖像關于直線對稱,設,已知對任意的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的極大值是函數(shù)的極小值的倍,并且,不等式恒成立,則實數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如甲圖所示,在矩形中, , , 的中點,將沿折起到位置,使平面平面,得到乙圖所示的四棱錐

求證: 平面;

求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某單位的職工食堂中,食堂每天以元/個的價格從面包店購進面包,然后以元/個的價格出售.如果當天賣不完,剩下的面包以元/個的價格賣給飼料加工廠.根據(jù)以往統(tǒng)計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進了個面包,以(單位:個, )表示面包的需求量, (單位:元)表示利潤.

(Ⅰ)求關于的函數(shù)解析式;

(Ⅱ)求食堂每天面包需求量的中位數(shù);

(Ⅲ)根據(jù)直方圖估計利潤不少于元的概率;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2+ax+a﹣2=0.
(1)當該方程的一個根為1時,求a的值及該方程的另一根;
(2)求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.
(3)設該方程的兩個實數(shù)根分別為x1 , x2 , 若2(x1+x2)+x1x2+10=0,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】集合A={x|3≤x<9},B={x|1<x<7},C={x|x>m}.
(1)求A∪B;
(2)求(RA)∩B;
(3)若BC,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案