分析 (Ⅰ)由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式.
(Ⅱ)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,可得h(x)的解析式,再根據(jù)h′(x)≥0恒成立,求得a的范圍.
解答 解:(Ⅰ)根據(jù)函數(shù)$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$的部分圖象,
可得A=1,$\frac{T}{2}$=$\frac{5π}{4}$-$\frac{π}{4}$=$\frac{π}{ω}$,∴ω=1.
再根據(jù)五點法作圖可得1•$\frac{π}{4}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{4}$,∴f(x)=sin(x+$\frac{π}{4}$).
(Ⅱ)把函數(shù)y=f(x)的圖象向右平移$\frac{π}{4}$個單位后得到函數(shù)g(x)=sin(x-$\frac{π}{4}$+$\frac{π}{4}$)=sinx的圖象
函數(shù)$h(x)=ax+\frac{1}{2}g(2x)-g(x)$=ax+$\frac{1}{2}$sin2x-sinx 在(-∞,+∞)單調(diào)遞增,
∴h′(x)=a+cos2x-cosx=2cos2x-cosx-1+a=2${(cosx-\frac{1}{4})}^{2}$-$\frac{9}{8}$+a≥0恒成立,
∴-$\frac{9}{8}$+a≥0恒成立,即a≥$\frac{9}{8}$恒成立,故a的范圍為[$\frac{9}{8}$,+∞).
點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出ω,由五點法作圖求出φ的值.還考查了函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的恒成立問題,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}{a=-1}\\{b=0}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{a=1}\\{b=0}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{a=0}\\{b=1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{a=0}\\{b=-1}\end{array}\right.$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)的最大值為$3+\frac{1}{e}$ | B. | 函數(shù)f(x)的最小值為$3+\frac{1}{e}$ | ||
C. | 函數(shù)f(x)的最大值為3 | D. | 函數(shù)f(x)的最小值為3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
1 | 3 | 5 | 7 | |
15 | 13 | 11 | 9 | |
17 | 19 | 21 | 23 | |
31 | 29 | 27 | 25 | |
… | … | … | … | … |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 72.705尺 | B. | 61.395尺 | C. | 61.905尺 | D. | 73.995尺 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 10 | C. | 11 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1” | |
B. | 命題“?x≥0,x2+x-1<0”的否定是“?x<0,x2+x-1<0” | |
C. | “x=-1”是“x2-5x-6=0”的必要不充分條件 | |
D. | 命題“若x=y,則sinx=siny”的逆否命題為真命題. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com