5.已知集合A={x|-2≤x≤7},B={x|m-1≤x≤2m+1},若A∪B=A,求實(shí)數(shù)m的取值范圍.

分析 根據(jù)題意,分析可得必有B⊆A,進(jìn)而對(duì)B分2種情況討論:①當(dāng)B=∅時(shí),②當(dāng)B≠∅時(shí),即2m+1≥m-1,分析求出兩種情況下m的取值范圍,綜合兩種情況即可得答案.

解答 解:根據(jù)題意,若A∪B=A,必有B⊆A,
分2種情況討論:
①當(dāng)B=∅時(shí),即2m+1<m-1,
解可得,m<-2;
②當(dāng)B≠∅時(shí),即2m+1≥m-1,
解可得,m≥-2;
此時(shí)有$\left\{\begin{array}{l}{m-1≥-2}\\{2m+1≤7}\end{array}\right.$,
解可得-1≤m≤3;
綜合可得:m的取值范圍為m≤-2或-1≤m≤3.

點(diǎn)評(píng) 本題考查集合之間包含關(guān)系的運(yùn)用,注意對(duì)于集合B需要分類討論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知三角形ABC中,AB=AC,AC邊上的中線長(zhǎng)為3,當(dāng)三角形ABC的面積最大時(shí),AB的長(zhǎng)為(  )
A.$2\sqrt{5}$B.3$\sqrt{6}$C.2$\sqrt{6}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若a,b為非零實(shí)數(shù),則(1)$\frac{a+b}{2}≥\sqrt{ab}$;(2)${({\frac{a+b}{2}})^2}≤\frac{{{a^2}+{b^2}}}{2}$;(3)$\frac{a+b}{2}≥\frac{ab}{a+b}$;(4)$\frac{a}+\frac{a}≥2$.其中恒成立的個(gè)數(shù)是(  )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.記函數(shù)f(x)=$\frac{1}{{\sqrt{x-2}}}$的定義域?yàn)榧螦,則函數(shù)g(x)=$\sqrt{9-{x^2}}$的定義域?yàn)榧螧,
(1)求A∩B和A∪B
(2)若C={x|p-2<x<2p+1},且C⊆A,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合A={x|2x2+ax+2=0,a∈R},B={x|x2+3x+2a=0,a∈R},A∩B={2}且A∪B=I,則(∁IA)∪(∁IB)=( 。
A.{-5,$\frac{1}{2}$}B.{-5,$\frac{1}{2}$,2}C.{-5,2}D.{$\frac{1}{2}$,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.f(x)=$\frac{x}{sinx}({x∈({-π,0})∪({0,π})})$大致的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-3,2),若k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$垂直,則實(shí)數(shù)k值為(  )
A.$\frac{1}{4}$B.$-\frac{1}{5}$C.$-\frac{2}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0,則l被圓C截得的最短弦長(zhǎng)為4$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)全集U={l,3,5,7,9},集合M={1,a-5},M⊆U且∁UM={3,5,7},則實(shí)數(shù)a=14.

查看答案和解析>>

同步練習(xí)冊(cè)答案