【題目】在正方體中,分別是的中點,則(

A. B. C. 平面 D. 平面

【答案】D

【解析】分析:對于選項A,由條件可得直線MN與平面相交,因為直線在平面內(nèi),可得直線MN與直線不可能平行,判斷選項A不對;對于選項B,因為點的中點,所以要證只需證。,所以不垂直選項B不對;對于選項C,可用反證法推出矛盾。假設(shè)平面,由直線與平面垂直的定義可得因為的中點,由等腰三角形的三線合一可得 。這與矛盾故假設(shè)不成立。所以選項C不對;對于選項D,可找與直線MN平行的一條直線,證其垂直于平面。故分別取的中點P、Q,連接PM、QN、PQ?傻盟倪呅為平行四邊形。進(jìn)而可得。正方體中易得,由直線與平面垂直的判定定理可得平面。進(jìn)而可得平面

詳解對于選項A,因為分別是的中點,所以點平面, 平面所以直線MN是平面的交線,

又因為直線在平面內(nèi),故直線MN與直線不可能平行,故選項A錯;

對于選項B,正方體中易知 ,因為點的中點,所以直線 與直線不垂直故選項B不對;

對于選項C ,假設(shè)平面,可得。因為的中點,

所以 。這與矛盾故假設(shè)不成立。

所以選項C不對;

對于選項D,分別取的中點P、Q,連接PM、QN、PQ。

因為點的中點,所以。同理

所以,所以四邊形為平行四邊形。

所以

在正方體中,

因為 ,平面 ,平面,

所以平面。因為所以平面。

故選項D正確。

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|+|x+2|.

(1)當(dāng)a=1 時,求不等式f(x)≤5的解集;

(2)x0∈R,f(x0)≤|2a+1|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p:關(guān)于x的不等式ax>1的解集是{x|x<0};q:函數(shù) 的定義域為R.若p∨q是真命題,p∧q是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售某種品牌的空調(diào)器,每周周初購進(jìn)一定數(shù)量的空調(diào)器,商場每銷售一臺空調(diào)器可獲利500元,若供大于求,則每臺多余的空調(diào)器需交保管費100元;若供不應(yīng)求,則可從其他商店調(diào)劑供應(yīng),此時每臺空調(diào)器僅獲利潤200元.
(Ⅰ)若該商場周初購進(jìn)20臺空調(diào)器,求當(dāng)周的利潤(單位:元)關(guān)于當(dāng)周需求量n(單位:臺,n∈N)的函數(shù)解析式f(n);
(Ⅱ)該商場記錄了去年夏天(共10周)空調(diào)器需求量n(單位:臺),整理得表:

周需求量n

18

19

20

21

22

頻數(shù)

1

2

3

3

1

以10周記錄的各需求量的頻率作為各需求量發(fā)生的概率,若商場周初購進(jìn)20臺空調(diào)器,X表示當(dāng)周的利潤(單位:元),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,l是過定點P(4,2)且傾斜角為α的直線;在極坐標(biāo)系(以坐標(biāo)原點O為極點,

x軸非負(fù)半軸為極軸,取相同單位長度)中,曲線C的極坐標(biāo)方程為.

(1)寫出直線l的參數(shù)方程,并將曲線C的方程化為直角坐標(biāo)方程;

(2)若曲線C與直線相交于不同的兩點MN,求|PM|+|PN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若曲線的切線經(jīng)過點,求的方程;

(2)若方程有兩個不相等的實數(shù)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個小組各10名學(xué)生的英語口語測試成績?nèi)缦?/span>(單位:分).

甲組:76,90,84,86,81,87,86,82,85,83 乙組:82,84,85,89,79,80,91,89,79,74

現(xiàn)從這20名學(xué)生中隨機(jī)抽取一人,將抽出的學(xué)生為甲組學(xué)生記為事件A;“抽出學(xué)生的英語口語測試成績不低于85記為事件B,則P(AB)、P(A|B)的值分別是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是定義在R上的函數(shù),對R都有,且當(dāng)0時,<0,=1.

(1)求的值;

(2)求證:為奇函數(shù);

(3)求在[-2,4]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計劃在迎春節(jié)聯(lián)歡會中設(shè)一項抽獎活動:在一個不透明的口袋中裝入外形一樣號

碼分別為1,2,3,…,10的十個小球;顒诱咭淮螐闹忻鋈齻小球,三球號碼有且僅有兩個連號的為三等獎,獎金30元;三球號碼都連號為二等獎,獎金60元;三球號碼分別為1,5,10為一等獎,獎金240元;其余情況無獎金。

(1)求員工甲抽獎一次所得獎金ξ的分布列與期望;

(2)員工乙幸運地先后獲得四次抽獎機(jī)會,他得獎次數(shù)的方差是多少?

查看答案和解析>>

同步練習(xí)冊答案