【題目】某商店商品每件成本10元,若售價為25元,則每天能賣出288件,經(jīng)調(diào)查,如果降低價格,銷售量可以增加,且每天多賣出的商品件數(shù)t與商品單價的降低值x(單位:元,0≤x≤15)的關(guān)系是t=6x2
(1)將每天的商品銷售利潤y表示成x的函數(shù);
(2)如何定價才能使每天的商品銷售利潤最大?

【答案】
(1)解:設(shè)商品降價x元,記商品每天的獲利為f(x),則依題意得

f(x)=(25﹣10﹣x)(288+6x2)=(15﹣x)(288+6x2)=﹣6x3+90x2﹣288x+4320(0≤x≤15)


(2)解:根據(jù)(1),有f′(x)=﹣18x2+180x﹣288=﹣18(x﹣2)(x﹣8).

當(dāng)x變化時,f′(x)與f(x)的變化如下表:

x

[0,2)

2

(2,8)

8

(8,15]

f′(x)

0

+

0

f(x)

單調(diào)遞減

極小

單調(diào)遞增

極大

單調(diào)遞減

故x=8時,f(x)取得極大值.因為f(8)=4704,f(0)=4320,

所以定價為25﹣8=17元能使一天的商品銷售利潤最大


【解析】(1)根據(jù)題意列出函數(shù)關(guān)系式即可;(2)利用導(dǎo)數(shù)求函數(shù)的最大值即可解決.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(﹣3)=0,則xf(x)<0的解集是(
A.{x|﹣3<x<0或x>3}
B.{x|x<﹣3或0<x<3}
C.{x|x<﹣3或x>3}
D.{x|﹣3<x<0或0<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時,f(x)=2x2﹣x,則f(1)=(
A.﹣3
B.﹣1
C.1
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果偶函數(shù)f(x)在[3,7]上是增函數(shù)且最小值是2,那么f(x)在[﹣7,﹣3]上是(
A.減函數(shù)且最小值是2
B.減函數(shù)且最大值是2
C.增函數(shù)且最小值是2
D.增函數(shù)且最大值是2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小趙、小錢、小孫、小李四位同學(xué)被問到誰去過長城時, 小趙說:我沒去過;
小錢說:小李去過;
小孫說;小錢去過;
小李說:我沒去過.
假定四人中只有一人說的是假話,由此可判斷一定去過長城的是(
A.小趙
B.小李
C.小孫
D.小錢

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+c在x=﹣2處取得極值,并且它的圖象與直線y=﹣3x+3在點(1,0)處相切,則函數(shù)f(x)的表達式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線y=x3+x﹣2在P點處的切線平行于直線y=4x﹣1,則此切線方程是(
A.y=4x
B.y=4x﹣4
C.y=4x+8
D.y=4x或y=4x﹣4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從0,1,2,3,4中任選兩個不同的數(shù)字組成一個兩位數(shù),其中偶數(shù)的個數(shù)是(
A.6
B.8
C.10
D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)z1、z2∈C,則“z1+z2是實數(shù)”是“z1與z2共軛”的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊答案