【題目】已知函數(shù)(是自然對數(shù)的底數(shù))與的圖象上存在關(guān)于軸對稱的點,則實數(shù)的取值范圍是( )
A. B. C. D.
【答案】A
【解析】根據(jù)題意,若函數(shù)f(x)=﹣x3+1+a(≤x≤e,e是自然對數(shù)的底)與g(x)=3lnx的圖象上存在關(guān)于x軸對稱的點,
則方程﹣x3+1+a=﹣3lnx在區(qū)間[,e]上有解,
﹣x3+1+a=﹣3lnxa+1=x3﹣31nx,即方程a+1=x3﹣31nx在區(qū)間[,e]上有解,
設(shè)函數(shù)g(x)=x3﹣31nx,其導數(shù)g′(x)=3x2﹣ = ,
又由x∈[,e],g′(x)=0在x=1有唯一的極值點,
分析可得:當≤x≤1時,g′(x)<0,g(x)為減函數(shù),
當1≤x≤e時,g′(x)>0,g(x)為增函數(shù),
故函數(shù)g(x)=x3﹣31nx有最小值g(1)=1,
又由g()= +3,g(e)=e3﹣3;比較可得:g()<g(e),
故函數(shù)g(x)=x3﹣31nx有最大值g(e)=e3﹣3,
故函數(shù)g(x)=x3﹣31nx在區(qū)間[,e]上的值域為[1,e3﹣3];
若方程a+1=x3﹣31nx在區(qū)間[,e]上有解,
必有1≤a+1≤e3﹣3,則有0≤a≤e3﹣4,
即a的取值范圍是[0,e3﹣4];
科目:高中數(shù)學 來源: 題型:
【題目】樹立和踐行“綠水青山就是金山銀山,堅持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站推出了關(guān)于生態(tài)文明建設(shè)進展情況的調(diào)查,調(diào)查數(shù)據(jù)表明,環(huán)境治理和保護問題仍是百姓最為關(guān)心的熱點,參與調(diào)查者中關(guān)注此問題的約占.現(xiàn)從參與關(guān)注生態(tài)文明建設(shè)的人群中隨機選出200人,并將這200人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)求出的值;
(2)現(xiàn)在要從年齡較小的第1,2組中用分層抽樣的方法抽取5人,再從這5人中隨機抽取3人進行問卷調(diào)查,求第2組恰好抽到2人的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: 的上下焦點分別為F1 , F2 , 離心率為 ,P為C上動點,且滿足 |,△QF1F2面積的最大值為4. (Ⅰ)求Q點軌跡E的方程和橢圓C的方程;
(Ⅱ)直線y=kx+m(m>0)與橢圓C相切且與曲線E交于M,N兩點,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,共享單車已經(jīng)悄然進入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務民眾,某共享單車公司在其官方中設(shè)置了用戶評價反饋系統(tǒng),以了解用戶對車輛狀況和優(yōu)惠活動的評價.現(xiàn)從評價系統(tǒng)中選出條較為詳細的評價信息進行統(tǒng)計,車輛狀況的優(yōu)惠活動評價的列聯(lián)表如下:
對優(yōu)惠活動好評 | 對優(yōu)惠活動不滿意 | 合計 | |
對車輛狀況好評 | |||
對車輛狀況不滿意 | |||
合計 |
(1)能否在犯錯誤的概率不超過的前提下認為優(yōu)惠活動好評與車輛狀況好評之間有關(guān)系?
(2)為了回饋用戶,公司通過向用戶隨機派送每張面額為元,元,元的 三種騎行券.用戶每次使用掃碼用車后,都可獲得一張騎行券.用戶騎行一次獲得元券,獲得元券的概率分別是,,且各次獲取騎行券的結(jié)果相互獨立.若某用戶一天使用了兩次該公司的共享單車,記該用戶當天獲得的騎行券面額之和為,求隨機變量的分布列和數(shù)學期望.
參考數(shù)據(jù):
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且B=60°,c=4.
(Ⅰ)若b=6,求角C的正弦值及△ABC的面積;
(Ⅱ)若D,E在線段BC上,且BD=DE=EC, ,求AD的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項生產(chǎn)任務的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務的工作時間(單位:min)繪制了如下莖葉圖:
(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;
(2)求40名工人完成生產(chǎn)任務所需時間的中位數(shù),并將完成生產(chǎn)任務所需時間超過和不超過的工人數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
第一種生產(chǎn)方式 | ||
第二種生產(chǎn)方式 |
(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認為兩種生產(chǎn)方式的效率有差異?
附:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面凸四邊形中(凸四邊形指沒有角度數(shù)大于的四邊形),.
(1)若,,求;
(2)已知,記四邊形的面積為.
① 求的最大值;
② 若對于常數(shù),不等式恒成立,求實數(shù)的取值范圍.(直接寫結(jié)果,不需要過程)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某觀光海域AB段的長度為3百公里,一超級快艇在AB段航行,經(jīng)過多次試驗得到其每小時航行費用Q(單位:萬元)與速度v(單位:百公里/小時)(0≤v≤3)的以下數(shù)據(jù):
0 | 1 | 2 | 3 | |
0 | 0.7 | 1.6 | 3.3 |
為描述該超級快艇每小時航行費用Q與速度v的關(guān)系,現(xiàn)有以下三種函數(shù)模型供選擇:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b.
(1)試從中確定最符合實際的函數(shù)模型,并求出相應的函數(shù)解析式;
(2)該超級快艇應以多大速度航行才能使AB段的航行費用最少?并求出最少航行費用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com