【題目】已知拋物線(xiàn)C的焦點(diǎn)在y軸上,焦點(diǎn)到準(zhǔn)線(xiàn)的距離為2,且對(duì)稱(chēng)軸為y軸.
(1)求拋物線(xiàn)C的標(biāo)準(zhǔn)方程;
(2)當(dāng)拋物線(xiàn)C的焦點(diǎn)為時(shí),過(guò)F作直線(xiàn)交拋物線(xiàn)于,A、B兩點(diǎn),若直線(xiàn)OA,OB(O為坐標(biāo)原點(diǎn))分別交直線(xiàn)于M、N兩點(diǎn),求的最小值.
【答案】(1);(2)
【解析】
(1)根據(jù)拋物線(xiàn)的定義即可求出拋物線(xiàn)方程;
(2)由題意可得拋物線(xiàn)C的方程為,設(shè),,直線(xiàn)AB的方程為,聯(lián)立直線(xiàn)與拋物線(xiàn)方程,利用韋達(dá)定理求得,聯(lián)立方程求得點(diǎn)M、N的橫坐標(biāo),則,利用換元法求最值即可得出答案.
解:(1)當(dāng)焦點(diǎn)在y軸正半軸時(shí),設(shè)拋物線(xiàn)C標(biāo)準(zhǔn)方程為,
則,所以?huà)佄锞(xiàn)C的方程為,
當(dāng)焦點(diǎn)在y軸負(fù)半軸時(shí),設(shè)拋物線(xiàn)C標(biāo)準(zhǔn)方程為,
則,所以?huà)佄锞(xiàn)C的方程為;
(2)依題意,拋物線(xiàn)C的方程為,設(shè),,直線(xiàn)AB的方程為,
由消去y整理可得:,
∴,,∴,
由,解得點(diǎn)M的橫坐標(biāo)為,
同理可得點(diǎn)N的橫坐標(biāo)為,
∴,
令,,則,
當(dāng)時(shí),,
當(dāng)時(shí),,
此時(shí)即,則,
綜上:的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面平面,,是等邊三角形,已知,.
(1)設(shè)是上的一點(diǎn),證明:平面平面;
(2)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分12分)一個(gè)盒子里裝有三張卡片,分別標(biāo)記有數(shù)字,,,這三張卡片除標(biāo)記的數(shù)字外完全相同。隨機(jī)有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,,.
(Ⅰ)求“抽取的卡片上的數(shù)字滿(mǎn)足”的概率;
(Ⅱ)求“抽取的卡片上的數(shù)字,,不完全相同”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是邊長(zhǎng)為2的正方形,為的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線(xiàn)(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)的普通方程和直線(xiàn)的直角坐標(biāo)方程;
(2)若曲線(xiàn)與直線(xiàn)交于兩點(diǎn),點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】微信作為一款社交軟件已經(jīng)在支付,理財(cái),交通,運(yùn)動(dòng)等各方面給人的生活帶來(lái)各種各樣的便利.手機(jī)微信中的“微信運(yùn)動(dòng)”,不僅可以看自己每天的運(yùn)動(dòng)步數(shù),還可以看到朋友圈里好友的步數(shù). 先生朋友圈里有大量好友使用了“微信運(yùn)動(dòng)”這項(xiàng)功能.他隨機(jī)選取了其中40名,記錄了他們某一天的走路步數(shù),統(tǒng)計(jì)數(shù)據(jù)如下表所示:
(1)以樣本估計(jì)總體,視樣本頻率為概率,在先生的微信朋友圈里的男性好友中任意選取3名,其中走路步數(shù)不低于6000步的有名,求的分布列和數(shù)學(xué)期望;
(2)如果某人一天的走路步數(shù)不低于8000步,此人將被“微信運(yùn)動(dòng)”評(píng)定為“運(yùn)動(dòng)達(dá)人”,否則為“運(yùn)動(dòng)鳥(niǎo)人”.根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有90%以上的把握認(rèn)為“評(píng)定類(lèi)型”
與“性別”有關(guān)?
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:①“”是“”成立的必要不充分條件②命題“若,則”的否命題是:“若,則”;③命題“,使得”的否定是:“,均有”④如果命題“”與命題“”都是真命題,那么命題一定是真命題;其中為真命題的個(gè)數(shù)是( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】筒車(chē)是我國(guó)古代發(fā)明的一種水利灌溉工具,明朝科學(xué)家徐光啟在《農(nóng)政全書(shū)》中用圖畫(huà)描繪了筒車(chē)的工作原理(如圖1).因其經(jīng)濟(jì)又環(huán)保,至今還在農(nóng)業(yè)生產(chǎn)中得到使用(如圖2).假定在水流量穩(wěn)定的情況下,筒車(chē)上的每一個(gè)盛水筒都做勻速圓周運(yùn)動(dòng).因筒車(chē)上盛水筒的運(yùn)動(dòng)具有周期性,可以考慮利用三角函數(shù)模型刻畫(huà)盛水筒(視為質(zhì)點(diǎn))的運(yùn)動(dòng)規(guī)律.將筒車(chē)抽象為一個(gè)幾何圖形,建立直角坐標(biāo)系(如圖3).設(shè)經(jīng)過(guò)t秒后,筒車(chē)上的某個(gè)盛水筒從點(diǎn)P0運(yùn)動(dòng)到點(diǎn)P.由筒車(chē)的工作原理可知,這個(gè)盛水筒距離水面的高度H(單位: ),由以下量所決定:筒車(chē)轉(zhuǎn)輪的中心O到水面的距離h,筒車(chē)的半徑r,筒車(chē)轉(zhuǎn)動(dòng)的角速度ω(單位: ),盛水筒的初始位置P0以及所經(jīng)過(guò)的時(shí)間t(單位: ).已知r=3,h=2,筒車(chē)每分鐘轉(zhuǎn)動(dòng)(按逆時(shí)針?lè)较?/span>)1.5圈, 點(diǎn)P0距離水面的高度為3.5,若盛水筒M從點(diǎn)P0開(kāi)始計(jì)算時(shí)間,則至少需要經(jīng)過(guò)_______就可到達(dá)最高點(diǎn);若將點(diǎn)距離水面的高度表示為時(shí)間的函數(shù),則此函數(shù)表達(dá)式為_________.
圖1 圖2 圖3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C經(jīng)過(guò)A(5,3),B(4,4)兩點(diǎn),且圓心在x軸上.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若直線(xiàn)l過(guò)點(diǎn)(5,2),且被圓C所截得的弦長(zhǎng)為6,求直線(xiàn)l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com