分析 (1)利用三角函數(shù)最小正周期的公式T=$\frac{2π}{ω}$求得周期,令2kπ+$\frac{π}{2}$≤3x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z,解得函數(shù)f(x)單調(diào)減區(qū)間.
(2)由已知可求3x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{7π}{6}$],利用正弦函數(shù)的性質(zhì)可求其值域.
解答 解:(1)∵f(x)=2sin(3x-$\frac{π}{3}$),函數(shù)解析式中w=3,
∴函數(shù)的最小正周期T=$\frac{2π}{ω}$=$\frac{2π}{3}$,
∵令2kπ+$\frac{π}{2}$≤3x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z,解得:$\frac{2kπ}{3}$+$\frac{5π}{18}$≤x≤$\frac{2kπ}{3}$+$\frac{11π}{18}$,k∈Z,
∴函數(shù)f(x)單調(diào)減區(qū)間為:[$\frac{2kπ}{3}$+$\frac{5π}{18}$,$\frac{2kπ}{3}$+$\frac{11π}{18}$],k∈Z.
(2)∵x∈[0,$\frac{π}{2}$],
∴3x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{7π}{6}$],
∴f(x)=2sin(3x-$\frac{π}{3}$)∈[-$\sqrt{3}$,2],即f(x)的值域為[-$\sqrt{3}$,2].
點評 本題主要考查了三角函數(shù)的周期性及其求法.考查了正弦函數(shù)的圖象和性質(zhì)的應用,要熟練記憶三角函數(shù)中最小正周期的公式,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a≥4 | B. | a>4 | C. | a>3 | D. | a≤1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com