【題目】某小區(qū)所有263戶家庭人口數(shù)分組表示如下:
家庭人口數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
家庭數(shù) | 20 | 29 | 48 | 50 | 46 | 36 | 19 | 8 | 4 | 3 |
(1)若將上述家庭人口數(shù)的263個數(shù)據(jù)分布記作,平均值記作,寫出人口數(shù)方差的計算公式(只要計算公式,不必計算結(jié)果);
(2)寫出他們家庭人口數(shù)的中位數(shù)(直接給出結(jié)果即可);
(3)計算家庭人口數(shù)的平均數(shù)與標(biāo)準(zhǔn)差.(寫出公式,再利用計算器計算,精確到0.01)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某投資公司計劃投資A,B兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤y1與投資金額x的函數(shù)關(guān)系為y1=18-,B產(chǎn)品的利潤y2與投資金額x的函數(shù)關(guān)系為y2=(注:利潤與投資金額單位:萬元).
(1)該公司已有100萬元資金,并全部投入A,B兩種產(chǎn)品中,其中x萬元資金投入A產(chǎn)品,試把A,B兩種產(chǎn)品利潤總和表示為x的函數(shù),并寫出定義域;
(2)在(1)的條件下,試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的離心率為,左焦點(diǎn)為,過點(diǎn)且斜率為的直線交橢圓于兩點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍;
(3)在軸上,是否存在定點(diǎn),使恒為定值?若存在,求出點(diǎn)的坐標(biāo)和這個定值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為,右頂點(diǎn)為,離心率為.已知是拋物線的焦點(diǎn), 到拋物線的準(zhǔn)線的距離為.
(I)求橢圓的方程和拋物線的方程;
(II)設(shè)上兩點(diǎn), 關(guān)于軸對稱,直線與橢圓相交于點(diǎn)(異于點(diǎn)),直線與軸相交于點(diǎn).若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓及直線:.
(1)證明:不論取什么實(shí)數(shù),直線與圓C總相交;
(2)求直線被圓C截得的弦長的最小值及此時的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面四邊形中,、分、所成的比為,即,則有:.
(1)拓展到空間,寫出空間四邊形類似的命題,并加以證明;
(2)在長方體中,,,,、分別為、的中點(diǎn),利用上述(1)的結(jié)論求線段的長度;
(3)在所有棱長均為平行六面體中,(為銳角定值),、分、所成的比為,求的長度.(用,,表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年國際籃聯(lián)籃球世界杯,將于2019年在北京、廣州、南京、上海、武漢、深圳、佛山、東莞八座城市舉行.為了宣傳世界杯,某大學(xué)從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對是否收看籃球世界杯賽事的情況進(jìn)行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:
(1)根據(jù)上表說明,能否有的把握認(rèn)為收看籃球世界杯賽事與性別有關(guān)?
(2)現(xiàn)從參與問卷調(diào)查的120名學(xué)生中,采用按性別分層抽樣的方法選取6人參加2019年國際籃聯(lián)籃球世界杯賽志愿者宣傳活動.
(i)求男、女學(xué)生各選取多少人;
(ii)若從這6人中隨機(jī)選取3人到校廣播站開展2019年國際籃聯(lián)籃球世界杯賽宣傳介紹,求恰好選到2名男生的概率.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在極坐標(biāo)系中,為極點(diǎn),點(diǎn),點(diǎn).
(1)以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,求經(jīng)過,,三點(diǎn)的圓的直角坐標(biāo)方程;
(2)在(1)的條件下,圓的極坐標(biāo)方程為,若圓與圓相切,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線的參數(shù)方程為(t為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,曲線關(guān)于對稱.
(1)求極坐標(biāo)方程,直角坐標(biāo)方程;
(2)將向左平移4個單位長度,按照變換得到與兩坐標(biāo)軸交于兩點(diǎn),為上任一點(diǎn),求的面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com