16.平行于直線l:2x-y=0且與圓x2+y2=5相切的直線的方程是( 。
A.2x-y+=0或2x-y-=0B.2x+y+=0或2x+y-=0
C.2x-y+5=0或2x-y-5=0D.2x+y+5=0或2x+y-5=0

分析 先設(shè)出與2x-y+5=0平行的直線系方程2x-y+c=0,利用圓心到直線的距離求出參數(shù)c.

解答 解:設(shè)所求切線方程為2x-y+c=0,依題有$\frac{|0+0+c|}{\sqrt{4+1}}=\sqrt{5}$,解得c=±5,所以所求的直線方程為2x-y+5=0或2x-y-5=0.
故選C.

點評 本題考查直線方程,考查直線與圓的位置關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}x+y-8≤0\\ x-y-2≤0\\ x-2≥0\end{array}\right.$,則z=2x-y的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=(log2x)2-2(a-1)•log2x-2(a∈R)在[2,4]上的最小值記為φ(a).
(1)求φ(a)的表達式;
(2)請用二分法計算函數(shù)g(a)=|2a-1|-φ(a)零點的近似值(精確度0.15)(參考數(shù)據(jù)20.25≈1.2,20.375≈1.3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)為偶函數(shù)的是( 。
A.y=x-1B.y=$\sqrt{x}$C.y=x2D.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={x|x2-x-2≤0},B={x|log2x>1},則A∩(∁RB)=(  )
A.(0,2]B.(0,2)C.[-1,2]D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖所示的散點圖,現(xiàn)選用兩種回歸模型,模型A:使用線性回歸,計算相關(guān)指數(shù)$R_1^2$;模型B:用指數(shù)回歸,計算出相關(guān)指數(shù)$R_2^2$,則一定有( 。
A.$R_1^2>R_2^2$B.$R_1^2<R_2^2$C.$R_1^2=R_2^2$D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=48x-x3,x∈[-3,5]的最小值為( 。
A.128B.-128C.-117D.115

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.拋物線C:y2=2px(p>0)的焦點與圓F:x2+y2-4x=0的圓心重合,點A,B,C在該拋物線上,且點F是△ABC的重心,則|FA|+|FB|+|FC|的值是( 。
A.6B.8C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.平面向量$\overrightarrow a$與$\overrightarrow b$的夾角為150°,$\overrightarrow a=(2,0)$,$|{\overrightarrow b}|=2$則$|{\overrightarrow a+\sqrt{3}\overrightarrow b}|$=2.

查看答案和解析>>

同步練習(xí)冊答案