如圖,在直三棱柱中,已知,,.
(1)求異面直線與夾角的余弦值;
(2)求二面角平面角的余弦值.
(1),(2).
解析試題分析:(1)利用空間向量求線線角,關(guān)鍵在于正確表示各點的坐標. 以為正交基底,建立空間直角坐標系.則,,,,所以,,因此,所以異面直線與夾角的余弦值為.(2)利用空間向量求二面角,關(guān)鍵在于求出一個法向量. 設(shè)平面的法向量為,則 即取平面的一個法向量為;同理可得平面的一個法向量為;由兩向量數(shù)量積可得二面角平面角的余弦值為.
試題解析:
如圖,以為正交基底,建立空間直角坐標系.
則,,,,所以,,
,.
(1)因為,
所以異面直線與夾角的余弦值為. 4分
(2)設(shè)平面的法向量為,
則 即
取平面的一個法向量為;
所以二面角平面角的余弦值為. 10分
考點:利用空間向量求線線角及二面角
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱的底面是等腰直角三角形,,側(cè)棱底面,且,是的中點,是上的點.
(1)求異面直線與所成角的大小(結(jié)果用反三角函數(shù)表示);
(2)若,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正方形與梯形所在的平面互相垂直,,∥,,,為的中點.
(1)求證:∥平面;
(2)求證:平面平面;
(3)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在△ABC中,∠ABC=,∠BAC,AD是BC上的高,沿AD把△ABD折起,使∠BDC.
(1)證明:平面ADB⊥平面BDC;
(2)設(shè)E為BC的中點,求與夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知正方體的棱長為2,E、F分別是、的中點,過、E、F作平面交于G.
(l)求證:EG∥;
(2)求二面角的余弦值;
(3)求正方體被平面所截得的幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且底面ABCD,,E是PA的中點.
(1)求證:平面平面EBD;
(2)若PA=AB=2,直線PB與平面EBD所成角的正弦值為,求四棱錐P-ABCD的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com