【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系 中,直線 過 ,傾斜角為 .以 為極點, 軸非負半軸為極軸,建立極坐標系,曲線 的極坐標方程為 .
(Ⅰ)求直線 的參數(shù)方程和曲線 的直角坐標方程;
(Ⅱ)已知直線 與曲線 交于 、 兩點,且 ,求直線 的斜率 .
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=ln(1+x)+mln(1-x)是偶函數(shù),則( )
A.m=1,且f(x)在(0,1)上是增函數(shù)
B.m=1,且f(x)在(0,1)上是減函數(shù)
C.m=-1,且f(x)在(0,1)上是增函數(shù)
D.m=-1,且f(x)在(0,1)上是減函數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點為極點, 軸的正半軸為極軸,以相同的長度單位建立極坐標系,已知直線 的極坐標方程為 ,曲線 的極坐標方程為 .
(1)設 為參數(shù),若 ,求直線 的參數(shù)方程;
(2)已知直線 與曲線 交于 ,設 ,且 ,求實數(shù) 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù) 的部分圖像如圖所示,將 的圖象向右平移 個單位長度后得到函數(shù) 的圖象.
(1)求函數(shù) 的解折式;
(2)在 中,角 滿足 ,且其外接圓的半徑 ,求 的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知下列命題:
①命題“ , ”的否定是:“ , ”;
②若樣本數(shù)據(jù) 的平均值和方差分別為 和 則數(shù)據(jù) 的平均值和標準差分別為 , ;
③兩個事件不是互斥事件的必要不充分條件是兩個事件不是對立事件;
④在 列聯(lián)表中,若比值 與 相差越大,則兩個分類變量有關系的可能性就越大.
⑤已知 為兩個平面,且 , 為直線.則命題:“若 ,則 ”的逆命題和否命題均為假命題.
⑥設定點 、 ,動點 滿足條件 為正常數(shù)),則 的軌跡是橢圓.其中真命題的個數(shù)為( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系 中,曲線 ( 為參數(shù)且 ),其中 ,在以 為極點, 軸正半軸為極軸的極坐標系中,曲線 .
(Ⅰ)求 與 交點的直角坐標;
(Ⅱ)若 與 相交于點 , 與 相交于點 ,求當 時 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù) 是定義域為 的偶函數(shù),當 時, 若關于 的方程 有且僅有8個不同實數(shù)根,則實數(shù) 的取
值范圍是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ()
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)證明:當時,對于任意, ,總有成立,其中是自然對數(shù)的底數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com