給定雙曲線,過點(diǎn)B(1,1)能否作直線l,使直線l與雙曲線交于P,Q兩點(diǎn),且點(diǎn)B是線段PQ的中點(diǎn)?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.
【答案】分析:先假設(shè)存在這樣的直線l,分類討論:斜率存在和斜率不存在設(shè)出直線l的方程,①當(dāng)k存在時(shí),與雙曲線方程聯(lián)立,消去y,得到關(guān)于x的一元二次方程,直線與雙曲線相交于兩個(gè)不同點(diǎn),則△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,可求k的范圍,再由B是線段PQ的中點(diǎn),則=1,可求k,看是否矛盾,②當(dāng)k不存在時(shí),直線經(jīng)過點(diǎn)B但不滿足條件,故符合條件的直線l不存在,綜合可求
解答:解:設(shè)過點(diǎn)B(1,1)的直線方程為y=k(x-1)+1(當(dāng)k存在時(shí))或x=1(當(dāng)k不存在時(shí)).
(1)當(dāng)k存在時(shí),有
得(2-k2)x2+(2k2-2k)x-k2+2k-3=0 (1)
當(dāng)直線與雙曲線相交于兩個(gè)不同點(diǎn),則必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,
∴k<
設(shè)P(x1,y1),Q(x2,y2
∴x1+x2=,又B(1,1)為線段PQ的中點(diǎn)
=1 即=1
∴k=2
當(dāng)k=2,使2-k2≠0但使△<0
因此當(dāng)k=2時(shí),方程(1)無實(shí)數(shù)解
故過點(diǎn)B(1,1)與雙曲線交于兩點(diǎn)P、Q且B為線段PQ中點(diǎn)的直線不存在.
(2)當(dāng)k不存在時(shí),即當(dāng)x=1時(shí),直線經(jīng)過點(diǎn)B,但不滿足條件,
綜上,符合條件的直線l不存在.
點(diǎn)評(píng):本題考察了直線與雙曲線的位置關(guān)系,特別是相交時(shí)的中點(diǎn)弦問題,方程的根與系數(shù)關(guān)系的應(yīng)用,及利用方程思想判斷直線與曲線位置關(guān)系
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給定雙曲線x2-
y22
=1

(1)過點(diǎn)A(2,1)的直線L與所給的雙曲線交于兩點(diǎn)P1及P2,求線段P1P2的中點(diǎn)P的軌跡方程.
(2)過點(diǎn)B(1,1)能否作直線m,使m與所給雙曲線交于兩點(diǎn)Q1及Q2,且點(diǎn)B是線段Q1Q2的中點(diǎn)?這樣的直線m如果存在,求出它的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•福建模擬)已知中心的坐標(biāo)原點(diǎn),以坐標(biāo)軸為對(duì)稱軸的雙曲線C過點(diǎn)Q(2,
3
3
)
,且點(diǎn)Q在x軸上的射影恰為該雙曲線的一個(gè)焦點(diǎn)F1
(Ⅰ)求雙曲線C的方程;
(Ⅱ)命題:“過橢圓
x2
25
+
y2
16
=1
的一個(gè)焦點(diǎn)F作與x軸不垂直的任意直線l”交橢圓于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M,則
|AB|
|FM|
為定值,且定值是
10
3
”.命題中涉及了這么幾個(gè)要素:給定的圓錐曲線E,過該圓錐曲線焦點(diǎn)F的弦AB,AB的垂直平分線與焦點(diǎn)所在的對(duì)稱軸的交點(diǎn)M,AB的長度與F、M兩點(diǎn)間距離的比值.試類比上述命題,寫出一個(gè)關(guān)于拋物線C的類似的正確命題,并加以證明
(Ⅲ)試推廣(Ⅱ)中的命題,寫出關(guān)于圓錐曲線(橢圓、雙曲線、拋物線)的統(tǒng)一的一般性命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定雙曲線x2-
y22
=1
,過點(diǎn)B(1,1)能否作直線l,使直線l與雙曲線交于P,Q兩點(diǎn),且點(diǎn)B是線段PQ的中點(diǎn)?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給定雙曲線數(shù)學(xué)公式,過點(diǎn)B(1,1)能否作直線l,使直線l與雙曲線交于P,Q兩點(diǎn),且點(diǎn)B是線段PQ的中點(diǎn)?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案