【題目】設(shè)函數(shù)

(1)若在點(diǎn)處的切線斜率為,求的值;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若,求證:在時(shí), .

【答案】(1);(2)當(dāng)時(shí), 的單調(diào)減區(qū)間為.單調(diào)增區(qū)間為;

當(dāng)時(shí), 的單調(diào)減區(qū)間為;(3)證明見(jiàn)解析.

【解析】試題分析:(1先求出,通過(guò)在點(diǎn)處的切線斜率,可得解得;(2)由1知: ,結(jié)合導(dǎo)數(shù)分①、②兩種情況討論分別令求得 的范圍,可得函數(shù)增區(qū)間, 求得 的范圍,可得函數(shù)的減區(qū)間;;(3)通過(guò)變形,只需證明即可,利用,根據(jù)指數(shù)函數(shù)及冪函數(shù)的性質(zhì)、函數(shù)的單調(diào)性及零點(diǎn)判定定理即得到結(jié)論.

試題解析(1)若在點(diǎn)處的切線斜率為

,

.

(2)由

當(dāng)時(shí),令解得:

當(dāng)變化時(shí), 變化情況如表:

由表可知: 上是單調(diào)減函數(shù),在上是單調(diào)增函數(shù)

當(dāng)時(shí), , 的單調(diào)減區(qū)間為

所以,當(dāng)時(shí), 的單調(diào)減區(qū)間為.單調(diào)增區(qū)間為

當(dāng)時(shí), 的單調(diào)減區(qū)間為

(3)當(dāng)時(shí),要證,即證

,只需證

由指數(shù)函數(shù)及幕函數(shù)的性質(zhì)知: 上是增函數(shù)

,∴內(nèi)存在唯一的零點(diǎn),

也即上有唯一零點(diǎn)

設(shè)的零點(diǎn)為,則,即,

的單調(diào)性知:

當(dāng)時(shí), 為減函數(shù)

當(dāng)時(shí), , 為增函數(shù),

所以當(dāng)時(shí).

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列4個(gè)命題

,則的否命題是,則;

②若命題,則為真命題;

平面向量夾角為銳角,則的逆命題為真命題;

函數(shù)有零點(diǎn)函數(shù)上為減函數(shù)的充要條件.

其中正確的命題個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等差數(shù)列中, ,其前項(xiàng)和為,等比數(shù)列的各項(xiàng)均為正數(shù), ,且, .

(1)求數(shù)列的通項(xiàng)公式;

(2)令,設(shè)數(shù)列的前項(xiàng)和為,求)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=a﹣ ,
(1)若x∈[ ,+∞),①判斷函數(shù)g(x)=f(x)﹣2x的單調(diào)性并加以證明;②如果f(x)≤2x恒成立,求a的取值范圍;
(2)若總存在m,n使得當(dāng)x∈[m,n]時(shí),恰有f(x)∈[2m,2n],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各函數(shù)在其定義域中,既是奇函數(shù),又是增函數(shù)的是(
A.y=x+1
B.y=﹣x3
C.y=﹣
D.y=x|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的是(
A.
B.y=ex
C.y=lg|x|
D.y=﹣x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若Ai(i=1,2,3,…,n)是△AOB所在平面內(nèi)的點(diǎn),且 = ,給出下列說(shuō)法:
·(1)| |=| |=| |=…=| |
·(2)| |的最小值一定是| |
·(3)點(diǎn)A和點(diǎn)Ai一定共線
·(4)向量 在向量 方向上的投影必定相等
其中正確的個(gè)數(shù)是(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有三個(gè)不同的零點(diǎn) , (其中),則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一塊半徑為2的半圓形紙片,計(jì)劃剪裁成等腰梯形ABCD的形狀,它的下底AB是⊙O的直徑,上底CD的端點(diǎn)在圓周上,設(shè)CD=2x,梯形ABCD的周長(zhǎng)為y.
(1)求出y關(guān)于x的函數(shù)f(x)的解析式;
(2)求y的最大值,并指出相應(yīng)的x值.

查看答案和解析>>

同步練習(xí)冊(cè)答案