【題目】數(shù)列{an}滿足a1=1,an+1 =1,記Sn=a12+a22+…+an2 , 若S2n+1﹣Sn 對任意n∈N*恒成立,則正整數(shù)m的最小值是

【答案】10
【解析】解:∵數(shù)列{an}滿足a1=1,an+1 =1,
=4,
∴數(shù)列 是等差數(shù)列,首項為1,公差為4.

=
∵Sn=a12+a22+…+an2 ,
∴(S2n+1﹣Sn)﹣(S2n+3﹣Sn+1)=(Sn+1﹣Sn)﹣(S2n+3﹣S2n+1
= = = + >0,
∴數(shù)列{S2n+1﹣Sn}是單調遞減數(shù)列,
∴數(shù)列{S2n+1﹣Sn}的最大項是S3﹣S1= = =
,∴
又m為正整數(shù),
∴m的最小值為10.
所以答案是:10.
【考點精析】解答此題的關鍵在于理解數(shù)列的通項公式的相關知識,掌握如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在明朝程大位《算法統(tǒng)宗》中,有這樣的一首歌謠,叫做浮屠增級歌.“遠看巍巍塔七層,紅光點點倍加倍;共燈三百八十一,請問尖頭幾盞燈?”本題是說,“遠處有一座雄偉的佛塔,塔上掛滿了許多紅燈,下一層燈數(shù)是上一層燈數(shù)的2倍,全塔共有381盞,試問頂層有幾盞燈?”;同樣在這本書中還有一道著名算題:“一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚各幾。俊比绻g成白話文,其意思是:“有100個和尚分100個饅頭,如果大和尚一人分3個,小和尚3人分一個,正好分完.”現(xiàn)按照分層抽樣的辦法從這100名和尚中選取12人派去布置第一個問題中最頂層的燈,那么每盞燈需要分派的大小和尚數(shù)各為(A)1人,3人 (B)2人,4人 (C)3人,6人 (D)3人,9人

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】.

(1)令,求的單調區(qū)間;

(2)已知處取得極大值.求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓軸的正半軸交于點,以為圓心的圓

與圓交于兩點.

(1)若直線與圓切于第一象限,且與坐標軸交于,當線段長最小時,求直線的方程;

(2)設是圓上異于的任意一點,直線分別與軸交于點,問是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列{an}是等差數(shù)列,首項a1>0,a2003+a2004>0,a2003 . a2004<0,則使前n項和Sn>0成立的最大自然數(shù)n是(
A.4005
B.4006
C.4007
D.4008

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)),).

(1)討論的單調性;

(2)設, ,若)是的兩個零點,且,

試問曲線在點處的切線能否與軸平行?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 用總長14.8米的鋼條制作一個長方體容器的框架,如果所制容器底面一邊的長比另一邊的長多0.5米,那么高為多少時容器的容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}中,a1=8,a4=2,且滿足an+2﹣2an+1+an=0,n∈N*
(1)求數(shù)列{an}的通項;
(2)設Sn=|a1|+|a2|+…+|an|,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)=x2﹣2x﹣1.
(1)求f(x)的函數(shù)解析式,并用分段函數(shù)的形式給出;
(2)作出函數(shù)f(x)的簡圖;
(3)寫出函數(shù)f(x)的單調區(qū)間及最值.

查看答案和解析>>

同步練習冊答案