已知O為△ABC的外心,AB=4,AC=2,∠BAC為鈍角,M是邊BC的中點,則數(shù)學公式的值等于________.

5
分析:過點O分別作OE⊥AB于E,OF⊥AC于F,可得E、F分別是AB、AC的中點.根據(jù)Rt△AOE中余弦的定義,算出==8,同理得==2.再由M是BC邊的中點,可得==(8+2)=5.
解答:過點O分別作OE⊥AB于E,OF⊥AC于F,則E、F分別是AB、AC的中點
可得Rt△AEO中,cos∠OAE==
===8,
同理可得==2
∵M是BC邊的中點,可得,
==+)==5
故答案為:5
點評:本題將△ABC放在它的外接圓O中,求中線AM對應的向量的數(shù)量積之值,著重考查了平面向量的數(shù)量積的運算性質(zhì)和三角形外接圓等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知O為△ABC所在平面外一點,且
OA
=
a
,
OB
=
b
,
OC
=
c
,OA,OB,OC兩兩互相垂直,H為△ABC的垂心,試用
a
,
b
c
表示
OH

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•道里區(qū)三模)已知四面體P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=
3
AB
,若四面體P-ABC的體積為
3
2
,則該球的體積為
4
3
π
4
3
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四面體P-ABC的外接球的球心O在AB上,且PO⊥面ABC,2AC=
3
AB
,若四面體P-ABC的體積為
3
2
,則P、C兩點間的球面距離為
3
2
п
3
2
п

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•吉林二模)已知四面體P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=
3
AB,若四面體P-ABC的體積為
3
2
,則該球的體積為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O是△ABC的外心,P是平面ABC外的一點,且PA=PB=PC,α是經(jīng)過PO的任意一個平面,則α與平面ABC所成的角為_______________.

查看答案和解析>>

同步練習冊答案