圓C1: 與圓C2:的位置關(guān)系是(   )

A.外離             B.外切             C.內(nèi)切             D.相交

 

【答案】

B

【解析】

試題分析:因?yàn)閨C1C2|= =5,R=1,r=4,|C1C2|=R+r,所以兩圓外切,選B。

考點(diǎn):本題主要考查兩圓的位置關(guān)系。

點(diǎn)評(píng):簡(jiǎn)單題,研究圓與圓的位置關(guān)系,由幾何法和代數(shù)法兩種,較常用的是幾何法,研究半徑之和差與圓心距之間的關(guān)系。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓
x24
+y2=1
的左、右兩個(gè)頂點(diǎn)分別為A,B,直線x=t(-2<t<2)與橢圓相交于M,N兩點(diǎn),經(jīng)過(guò)三點(diǎn)A,M,N的圓與經(jīng)過(guò)三點(diǎn)B,M,N的圓分別記為圓C1與圓C2
(1)求證:無(wú)論t如何變化,圓C1與圓C2的圓心距是定值;
(2)當(dāng)t變化時(shí),求圓C1與圓C2的面積的和S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知如圖橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,橢圓的左、右兩個(gè)頂點(diǎn)分別為A,B,AB=4,直線x=t(-2<t<2)與橢圓相交于M,N兩點(diǎn),經(jīng)過(guò)三點(diǎn)A,M,N的圓與經(jīng)過(guò)三點(diǎn)B,M,N的圓分別記為圓C1與圓C2.
(1)求橢圓的方程;
(2)求證:無(wú)論t如何變化,圓C1與圓C2的圓心距是定值;
(3)當(dāng)t變化時(shí),求圓C1與圓C2的面積的和S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l過(guò)點(diǎn)(1,
178
)且它的一個(gè)方向向量為(4,-7),又圓C1:(x+3)2+(y-1)2=4與圓C2關(guān)于直線l對(duì)稱.
(Ⅰ)求直線l和圓C2的方程;
(Ⅱ)設(shè)P為平面上的點(diǎn),滿足:存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線l1和l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長(zhǎng)與直線l2被圓C2截得的弦長(zhǎng)相等,試示所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:導(dǎo)學(xué)大課堂必修二數(shù)學(xué)蘇教版 蘇教版 題型:044

已知圓C1:x2+y2+2x+8y-8=0,圓C2:x2+y2-4x-4y-2=0,試判斷圓C1與圓C2的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省肇慶市高三數(shù)學(xué)復(fù)習(xí)必修2模塊測(cè)試試卷B 題型:選擇題

圓C1: 與圓C2:的位置關(guān)系是(    )

A、外離     B  相交     C  內(nèi)切     D  外切

 

查看答案和解析>>

同步練習(xí)冊(cè)答案