已知數(shù)列{an}滿足:a1=2,an+1=2an+1;
(1)求證:數(shù)列{an+1}是等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)求數(shù)列{an}的前n項(xiàng)和.
分析:(1)將數(shù)列的遞推公式變形,可得an+1+1=2(an+1),即可得到結(jié)論;
(2)先求數(shù)列{an+1}的通項(xiàng),再求數(shù)列{an}的通項(xiàng)公式;
(3)利用分組求和,即可求數(shù)列{an}的前n項(xiàng)和.
解答:(1)證明:∵an+1=2an+1(n∈N*),∴an+1+1=2(an+1),
∴{an+1}是以a1+1=2為首項(xiàng),2為公比的等比數(shù)列;
(2)解:由(1)知,an+1=2n,∴an=2n-1;
(3)解:數(shù)列{an}的前n項(xiàng)和為
2(1-2n)
1-2
-n=2n+1-2-n.
點(diǎn)評:由數(shù)列的遞推公式,通過構(gòu)造新的等比數(shù)列求數(shù)列的通項(xiàng)公式,是常考知識(shí)點(diǎn),正確變形是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊答案