函數(shù)y=y的取值范圍是,求a的值.

答案:
解析:

  解:y=+1=而x∈[2,4],則0<a<1,∴①.

  又

  ∴②.

  比較①、②知


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:福建省南安一中2010-2011學年高二下學期期末考試數(shù)學文科試題 題型:013

若函數(shù)y=f(x)是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),且f(2)=0,則使f(x)<0的x的取值范圍是

[  ]

A.(-∞,-2)

B.(2,+∞)

C.(-∞,-2)∪(2,+∞)

D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學 來源:浙江省杭州二中2011-2012學年高一上學期期中考試數(shù)學試題 題型:022

下列說法:

①函數(shù)的單調(diào)增區(qū)間是(-∞,1);

②若函數(shù)y=f(x)定義域為R且滿足f(1-x)=f(x+1),則它的圖象關于y軸對稱;

③函數(shù)的值域為(-1,1);

④函數(shù)y=|3-x2|的圖象和直線y=a(a∈R)的公共點個數(shù)是m,則m的值可能是0,2,3,4;

⑤若函數(shù)f(x)=x2-2ax+5(a>1)在x∈[1,3]上有零點,則實數(shù)a的取值范圍是

其中正確的序號是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)yf(x)是定義在(0,+∞)上的增函數(shù),對于任意的x>0,y>0,都有f(xy)=f(x)+f(y),且滿足f(2)=1.

(1)求f(1)、f(4)的值;

(2)求滿足f(x)-f(x-3)>1的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆黑龍江虎林高中高二下學期期中理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;

(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,

即f(x1)+x1≥f(x2)+x2,結(jié)合構造函數(shù)和導數(shù)的知識來解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>

同步練習冊答案