函數(shù)y=y的取值范圍是,求a的值.
科目:高中數(shù)學 來源:福建省南安一中2010-2011學年高二下學期期末考試數(shù)學文科試題 題型:013
若函數(shù)y=f(x)是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),且f(2)=0,則使f(x)<0的x的取值范圍是
A.(-∞,-2)
B.(2,+∞)
C.(-∞,-2)∪(2,+∞)
D.(-2,2)
查看答案和解析>>
科目:高中數(shù)學 來源:浙江省杭州二中2011-2012學年高一上學期期中考試數(shù)學試題 題型:022
下列說法:
①函數(shù)的單調(diào)增區(qū)間是(-∞,1);
②若函數(shù)y=f(x)定義域為R且滿足f(1-x)=f(x+1),則它的圖象關于y軸對稱;
③函數(shù)的值域為(-1,1);
④函數(shù)y=|3-x2|的圖象和直線y=a(a∈R)的公共點個數(shù)是m,則m的值可能是0,2,3,4;
⑤若函數(shù)f(x)=x2-2ax+5(a>1)在x∈[1,3]上有零點,則實數(shù)a的取值范圍是.
其中正確的序號是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知函數(shù)y=f(x)是定義在(0,+∞)上的增函數(shù),對于任意的x>0,y>0,都有f(xy)=f(x)+f(y),且滿足f(2)=1.
(1)求f(1)、f(4)的值;
(2)求滿足f(x)-f(x-3)>1的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆黑龍江虎林高中高二下學期期中理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)f(x)=alnx-x2+1.
(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;
(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.
【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),
不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,
即f(x1)+x1≥f(x2)+x2,結(jié)合構造函數(shù)和導數(shù)的知識來解得。
(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
(2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),
不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),
∵g′(x)=-2x+1=(x>0),
∴-2x2+x+a≤0在x>0時恒成立,
∴1+8a≤0,a≤-,又a<0,
∴a的取值范圍是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com