【題目】在斜三棱柱(側(cè)棱不垂直于底面)中,側(cè)面底面,底面是邊長為2的正三角形,.

1)求證:;

2)求二面角的正弦值.

【答案】1)證明見解析(2

【解析】

1)取的中點,連接,,通過證明,,證得平面,由此證得.

2)解法一:利用幾何法作出二面角的平面角,解三角形求得二面角的正切值,再求得其正弦值.

解法二:建立空間直角坐標(biāo)系,利用平面和平面的法向量,計算出二面角的余弦值,再求得其正弦值.

1)證明:如圖,取的中點,連接,,

,

,

∵底面是邊長為2的正三角形,

,,

,又,

平面,且平面,

.

2)解法一:如上圖,過點于點,連接.

∵側(cè)面底面,

∴側(cè)面平面,又,側(cè)面平面

側(cè)面,又平面

,又

平面,∴,

為所求二面角的平面角,

,∴,

,∴,

∴二面角的正弦值為.

法二:如圖,取的中點,以為坐標(biāo)原點,射線,,分別為,軸的正方向建立空間直角坐標(biāo)系,則,,,,

,,

設(shè)為平面的法向量,

,

,得,

為平面的一個法向量,

設(shè)二面角的大小為,顯然為銳角,

,

,∴二面角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)且,,,曲線的參數(shù)方程為為參數(shù)),以為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求的普通方程及的直角坐標(biāo)方程;

(2)若曲線與曲線分別交于點,,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國鐵路總公司相關(guān)負責(zé)人表示,到2018年底,全國鐵路營業(yè)里程達到13.1萬公里,其中高鐵營業(yè)里程2.9萬公里,超過世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運營里程(單位:萬公里)的折線圖,以下結(jié)論不正確的是( )

A.每相鄰兩年相比較,2014年到2015年鐵路運營里程增加最顯著

B.從2014年到2018年這5年,高鐵運營里程與年價正相關(guān)

C.2018年高鐵運營里程比2014年高鐵運營里程增長80%以上

D.從2014年到2018年這5年,高鐵運營里程數(shù)依次成等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)討論的單調(diào)性;

)若有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)設(shè),證明:函數(shù)有兩個零點,且

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過兩點,為坐標(biāo)原點.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)動直線與橢圓有且僅有一個公共點,且與圓相交于兩點,試問直線的斜率之積是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖(1),函數(shù)的圖象與x軸圍成一個封閉區(qū)域A(陰影部分),將區(qū)域A(陰影部分)沿z軸的正方向上移6個單位,得到一幾何體.現(xiàn)有一個與之等高的底面為橢圓的柱體如圖(2)所示,其底面積與區(qū)域A(陰影部分)的面積相等,則此柱體的體積為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)采用隨機模擬的方法估計某運動員射擊4次,至少擊中3次的概率;先由計算器給出09之間取整數(shù)值的隨機數(shù),指定0、12表示沒有擊中目標(biāo),3、4、5、6、7、8、9表示擊中目標(biāo),以4個隨機數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20隨機數(shù):

根據(jù)以上數(shù)據(jù)估計該射擊運動員射擊4次至少擊中3次的概率為(

A.0.55B.0.6C.0.65D.0.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國科學(xué)家屠呦呦教授由于在發(fā)現(xiàn)青蒿素和治療瘧疾的療法上的貢獻獲得諾貝爾醫(yī)學(xué)獎,以青蒿素類藥物為主的聯(lián)合療法已經(jīng)成為世界衛(wèi)生組織推薦的抗瘧疾標(biāo)準(zhǔn)療法,目前,國內(nèi)青蒿人工種植發(fā)展迅速,調(diào)查表明,人工種植的青蒿的長勢與海拔高度、土壤酸堿度、空氣濕度的指標(biāo)有極強的相關(guān)性,現(xiàn)將這三項的指標(biāo)分別記為,,,并對它們進行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標(biāo)的值評定人工種植的青蒿的長勢等級:若,則長勢為一級;若,則長勢為二級;若,則長勢為三級;為了了解目前人工種植的青蒿的長勢情況,研究人員隨機抽取了10塊青蒿人工種植地,得到如下結(jié)果:

種植地編號

種植地編號

1)在這10塊青蒿人工種植地中任取兩地,求這兩地的空氣濕度的指標(biāo)相同的概率;

2)從長勢等級是一級的人工種植地中任取一地,其綜合指標(biāo)為,從長勢等級不是一級的人工種植地中任取一地,其綜合指標(biāo)為,記隨機變量,求的分布列.

查看答案和解析>>

同步練習(xí)冊答案