設(shè)P是橢圓
x2
9
+
y2
5
=1上一點(diǎn),M,N分別是兩圓:(x+2)2+y2=1和(x-2)2+y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值分別為(  )
A、4,8B、2,6
C、6,8D、8,12
分析:由題設(shè)知橢圓
x2
9
+
y2
5
=1的焦點(diǎn)分別是兩圓(x+2)2+y2=1和(x-2)2+y2=1的圓心,由此能求出|PM|+|PN|的最小值、最大值.
解答:解:依題意,橢圓
x2
9
+
y2
5
=1的焦點(diǎn)分別是兩圓(x+2)2+y2=1和(x-2)2+y2=1的圓心,
所以(|PM|+|PN|)max=2×3+2=8,
(|PM|+|PN|)min=2×3-2=4,
故選A.
點(diǎn)評:本題考查圓錐曲線的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意公式的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•閔行區(qū)二模)給出下列四個(gè)命題:
①如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面的對應(yīng)點(diǎn)的軌跡是橢圓.
②若對任意的n∈N*,(an+1-an-1)(an+1-2an)=0恒成立,則數(shù)列{an}是等差數(shù)列或等比數(shù)列.
③設(shè)f(x)是定義在R上的函數(shù),且對任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
④已知曲線C:
x2
9
-
y2
16
=1
和兩定點(diǎn)E(-5,0)、F(5,0),若P(x,y)是C上的動(dòng)點(diǎn),則||PE|-|PF||<6.
上述命題中錯(cuò)誤的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面上所對應(yīng)點(diǎn)的軌跡是橢圓.
②設(shè)f(x)是定義在R上的函數(shù),且對任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
③已知曲線C:
x2
9
-
y2
16
=1
和兩定點(diǎn)E(-5,0)、F(5,0),若P(x,y)是C上的動(dòng)點(diǎn),則||PE|-|PF||<6.
④設(shè)定義在R上的兩個(gè)函數(shù)f(x)、g(x)都有最小值,且對任意的x∈R,命題“f(x)>0或g(x)>0”正確,則f(x)的最小值為正數(shù)或g(x)的最小值為正數(shù).
上述命題中錯(cuò)誤的個(gè)數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊答案