已知橢圓C1與雙曲線(xiàn)C2有共同的焦點(diǎn)F1(-2,0),F(xiàn)2(2,0),橢圓的一個(gè)短軸端點(diǎn)為B,直線(xiàn)F1B與雙曲線(xiàn)的一條漸近線(xiàn)平行,橢圓C1與雙曲線(xiàn)C2的離心率分別為e1,e2,則e1+e2取值范圍為( )
A.(2,+∞)
B.(4,+∞)
C.(4,+∞)
D.(2,+∞)
【答案】分析:設(shè)橢圓的長(zhǎng)軸為2a,短軸為2b;雙曲線(xiàn)的實(shí)軸為2a',虛軸為2b'.由橢圓、雙曲線(xiàn)的基本概念,結(jié)合直線(xiàn)平行的條件,建立關(guān)系式化簡(jiǎn)可得,即,可得e1•e2=1.由此結(jié)合基本不等式求最值,即可算出e1+e2取值范圍.
解答:解:設(shè)橢圓的長(zhǎng)軸為2a,短軸為2b;雙曲線(xiàn)的實(shí)軸為2a',虛軸為2b'
∵橢圓的一個(gè)短軸端點(diǎn)為B,直線(xiàn)F1B與雙曲線(xiàn)的一條漸近線(xiàn)平行,
,平方可得
由此得到,即
也即,可得e1•e2=1
∵e1、e2都是正數(shù),∴e1+e2≥2=2,且等號(hào)不能成立
因此e1+e2取值范圍為(2,+∞)
故選:D
點(diǎn)評(píng):本題給出橢圓與雙曲線(xiàn)有公共的焦點(diǎn),在橢圓的短軸端點(diǎn)B與F1的連線(xiàn)平行雙曲線(xiàn)的一條漸近線(xiàn)情況下,求離心率之和的范圍.著重考查了橢圓、雙曲線(xiàn)的標(biāo)準(zhǔn)方程與簡(jiǎn)單幾何性質(zhì)等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1與雙曲線(xiàn)C2有共同的焦點(diǎn)F1(-2,0),F(xiàn)2(2,0),橢圓的一個(gè)短軸端點(diǎn)為B,直線(xiàn)F1B與雙曲線(xiàn)的一條漸近線(xiàn)平行,橢圓C1與雙曲線(xiàn)C2的離心率分別為e1,e2,則e1+e2取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1與雙曲線(xiàn)C2有相同的焦點(diǎn)F1、F2,點(diǎn)P是C1與C2的一個(gè)公共點(diǎn),△PF1F2是一個(gè)以PF1為底的等腰三角形,,|PF1|=4,C1的離心率為
37
,則C2的離心率為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河北省唐山市高三上學(xué)期摸底考試?yán)砜茢?shù)學(xué)試卷 題型:填空題

已知橢圓C1與雙曲線(xiàn)C2有相同的焦點(diǎn)F1、F2,點(diǎn)P是C1與C2的一個(gè)公共點(diǎn),是一個(gè)以PF1為底的等腰三角形,C1的離心率為則C2的離心率

 

         。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓C1與雙曲線(xiàn)C2有共同的焦點(diǎn)F1(-2,0),F(xiàn)2(2,0),橢圓的一個(gè)短軸端點(diǎn)為B,直線(xiàn)F1B與雙曲線(xiàn)的一條漸近線(xiàn)平行,橢圓C1與雙曲線(xiàn)C2的離心率分別為e1,e2,則e1+e2取值范圍為( 。
A.(2,+∞)B.(4,+∞)C.(4,+∞)D.(2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案