分析 根據(jù)圓內(nèi)的動(dòng)點(diǎn)P使|PA|、|PO|、|PB|成等比數(shù)列,列出方程,再根據(jù)點(diǎn)P在圓內(nèi)求出取值范圍.
解答 解:不妨設(shè)A(x1,0),B(x2,0),x1<x2.由x2=4即得A(-2,0),B(2,0).
設(shè)P(x,y),
由|PA|,|PO|,|PB|成等比數(shù)列,得$\sqrt{(x+2)^{2}+{y}^{2}}•\sqrt{(x-2)^{2}+{y}^{2}}={x}^{2}+{y}^{2}$,
兩邊平方,可得(x2+y2+4)2-16x2=(x2+y2)2,
化簡(jiǎn)整理可得,x2-y2=2.
$\overrightarrow{PA}$•$\overrightarrow{PB}$=(-2-x,-y)•(2-x,-y)=x2-4+y2=2(y2-1).
由于點(diǎn)P在圓O內(nèi),故$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}<4}\\{{x}^{2}-{y}^{2}=2}\end{array}\right.$,
由此得y2<1.
所以$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范圍為[-2,0).
點(diǎn)評(píng) 此題主要考查圓的標(biāo)準(zhǔn)方程,以及圓與直線交點(diǎn)問題,屬于綜合性試題,有一定的計(jì)算量,難易中等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | -6 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0] | B. | [$\frac{4}{3}$,+∞) | C. | [0,$\frac{4}{3}$] | D. | (0,$\frac{4}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 0 | C. | -4 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com