已知函數(shù)

(1)求函數(shù)f(x)在區(qū)間[1,e]上的最大值、最小值;

(2)求證:在區(qū)間(1,+∞)上,函數(shù)f(x)圖象在函數(shù)圖象的下方;

(3)設(shè)函數(shù),求證:[h(x)]n+2≥h(xn)+2n

答案:
解析:

  (1)=,令,得

  當[1,]時,,則在區(qū)間[1,]上是增函數(shù)

  ∴當時,有最小值;當時,有最大值   4分

  (2)設(shè)=,則

  ∵,

  ∴在區(qū)間(1,)上是減函數(shù)           7分

  又∵

  ∴,即

  ∴在區(qū)間(1,)上,函數(shù)圖象在函數(shù)圖象的下方   9分

  (3)當時,左邊=,右邊=,不等式成立;

  當時,

  

  =

  由已知,

  ∴

  ∴.        14分


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2013-2014學年山東濟南外國語高三上學期期中考試理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù).

(1)求函數(shù)的最小正周期;

(2)求函數(shù)在區(qū)間上的函數(shù)值的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年山東濟南外國語高三上學期期中考試文科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù).

(1)求函數(shù)的最小正周期;

(2)求函數(shù)在區(qū)間上的函數(shù)值的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省南京市、鹽城市高三第一次模擬考試數(shù)學(解析版) 題型:解答題

(本小題滿分14分)

已知函數(shù).

(1)求函數(shù)的最小正周期;

(2)求函數(shù)在區(qū)間上的函數(shù)值的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年江蘇省常州高級中學高一(上)期中數(shù)學試卷(解析版) 題型:解答題

問題1:已知函數(shù),則…+f(9)+f(10)=______.
我們?nèi)舭衙恳粋函數(shù)值計算出,再求和,對函數(shù)值個數(shù)較少時是常用方法,但函數(shù)值個數(shù)較多時,運算就較繁鎖.觀察和式,我們發(fā)現(xiàn)、…、、可一般表示為=為定值,有此規(guī)律從而很方便求和,請求出上述結(jié)果,并用此方法求解下面問題:
問題2:已知函數(shù),求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2006-2007學年江蘇省常州高級中學高一(上)期中數(shù)學試卷(解析版) 題型:解答題

問題1:已知函數(shù),則…+f(9)+f(10)=______.
我們?nèi)舭衙恳粋函數(shù)值計算出,再求和,對函數(shù)值個數(shù)較少時是常用方法,但函數(shù)值個數(shù)較多時,運算就較繁鎖.觀察和式,我們發(fā)現(xiàn)、…、、可一般表示為=為定值,有此規(guī)律從而很方便求和,請求出上述結(jié)果,并用此方法求解下面問題:
問題2:已知函數(shù),求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

同步練習冊答案