精英家教網 > 高中數學 > 題目詳情
如圖,橢圓Q:(a>b>0)的右焦點F(c,0),過點F的一動直線m繞點F轉動,并且交橢圓于A、B兩點,P是線段AB的中點。
(1)求點P的軌跡H的方程;
(2)在Q的方程中,令a2=1+cosθ+sinθ,b2=sinθ(0<θ≤),確定θ的值,使原點距橢圓的右準線l最遠,此時,設l與x軸交點為D,當直線m繞點F轉動到什么位置時,三角形ABD的面積最大?
解:如圖,(1)設橢圓Q:(a>b>0)上的點A(x1,y1)、B(x2,y2),又設P點坐標為P(x,y),

1°當AB不垂直x軸時,x1≠x2
由(1)-(2)得b2(x1-x2)2x+a2(y1-y2)2y=0

∴b2x2+a2y2-b2cx=0(3);
2°當AB垂直于x軸時,點P即為點F,滿足方程(3)
故所求點P的軌跡方程為:b2x2+a2y2-b2cx=0。
(2)因為,橢圓Q右準線l方程是x=,原點距l(xiāng)的距離為
由于c2=a2-b2,a2=1+cosθ+sinθ,b2=sinθ(0<θ≤
==2sin(+
當θ=時,上式達到最大值。
此時a2=2,b2=1,c=1,D(2,0),|DF|=1
設橢圓Q:上的點 A(x1,y1)、B(x2,y2),
三角形ABD的面積S=|y1|+|y2|=|y1-y2|
設直線m的方程為x=ky+1,代入中,得
(2+k2)y2+2ky-1=0
由韋達定理得y1+y2=,y1y2=

令t=k2+1≥1,得
當t=1,k=0時取等號
因此,當直線m繞點F轉到垂直x軸位置時,三角形ABD的面積最大。
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(06年江西卷理)(12分)

如圖,橢圓Q:(a>b>0)的右焦點F(c,0),過點F的一動直線m繞點F轉動,并且交橢圓于A、B兩點,P是線段AB的中點

(1)求點P的軌跡H的方程

(2)在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q£ ),確定q的值,使原點距橢圓的右準線l最遠,此時,設l與x軸交點為D,當直線m繞點F轉動到什么位置時,三角形ABD的面積最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,橢圓Q:(a>b>0)的右焦點F(c,0),過點F的一動直線m繞點F轉動,并且交橢圓于A、B兩點,P是線段AB的中點

(1)       求點P的軌跡H的方程

(2)       在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q£ ),確定q的值,使原點距橢圓的右準線l最遠,此時,設l與x軸交點為D,當直線m繞點F轉動到什么位置時,三角形ABD的面積最大?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,橢圓Q:數學公式(a>b>0)的右焦點F(c,0),過點F的一動直線m繞點F轉動,并且交橢圓于A、B兩點,P是線段AB的中點.
(1)求點P的軌跡H的方程.
(2)在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q≤數學公式),確定q的值,使原點距橢圓的右準線l最遠,此時,設l與x軸交點為D,當直線m繞點F轉動到什么位置時,三角形ABD的面積最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

21.

    如圖,橢圓Q:=1(a>b>0)的右焦點為F(c,0),過點F的一動直線m繞點F轉動,并且交橢圓于A、B兩點,P為線段AB的中點.

    (1)求點P的軌跡H的方程;

    (2)若在Q的方程中,令a2=1+cosθ+sinθ,b2=sinθ(0<θ≤Equation.3).

    設軌跡H的最高點和最低點分別為M和N.當θ為何值時,△MNF為—個正三角形?

查看答案和解析>>

科目:高中數學 來源:2006年江西省高考數學試卷(理科)(解析版) 題型:解答題

如圖,橢圓Q:(a>b>0)的右焦點F(c,0),過點F的一動直線m繞點F轉動,并且交橢圓于A、B兩點,P是線段AB的中點.
(1)求點P的軌跡H的方程.
(2)在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q≤),確定q的值,使原點距橢圓的右準線l最遠,此時,設l與x軸交點為D,當直線m繞點F轉動到什么位置時,三角形ABD的面積最大?

查看答案和解析>>

同步練習冊答案