已知y=f(x)在定義域R上是減函數(shù),則函數(shù)y=f(|x+2|)的單調(diào)遞增區(qū)間是(  )
分析:由于函數(shù)y=f(x)是定義域R上的減函數(shù),故f(|x+2|)的單調(diào)增區(qū)間,即函數(shù)y=|x+2|減區(qū)間.結(jié)合函數(shù)y=|x+2|的圖象可得,應(yīng)有x+2<0,求得x的范圍,
即可求得函數(shù)y=f(|x+2|)的單調(diào)遞增區(qū)間.
解答:解:由于函數(shù)y=f(x)是定義域R上的減函數(shù),
故f(|x+2|)的單調(diào)增區(qū)間即函數(shù)y=|x+2|減區(qū)間.
結(jié)合函數(shù)y=|x+2|的圖象可得,應(yīng)有x+2<0,解得x<-2,
所以函數(shù)y=f(|x+2|)的單調(diào)減區(qū)間是(-∞,-2),
故選D.
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性的判斷和證明,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)F(a,0)(a>0),直線(xiàn)l:x=-a,點(diǎn)E是l上的動(dòng)點(diǎn),過(guò)點(diǎn)E垂直于y軸的直線(xiàn)與線(xiàn)段EF的垂直平分線(xiàn)交于點(diǎn)P.
(1)求點(diǎn)P的軌跡M的方程;
(2)若曲線(xiàn)M上在x軸上方的一點(diǎn)A的橫坐標(biāo)為a,過(guò)點(diǎn)A作兩條傾斜角互補(bǔ)的直線(xiàn),與曲線(xiàn)M的另一個(gè)交點(diǎn)分別為B、C,求證:直線(xiàn)BC的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+
bx-1
-a(a∈R,a≠0)在x=3處的切線(xiàn)方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線(xiàn)g(x)上的任意一點(diǎn)處的切線(xiàn)與直線(xiàn)x=0和直線(xiàn)y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實(shí)數(shù)m,k,使得f(x)+f(m-x)=k對(duì)于定義域內(nèi)的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三個(gè)解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=ax+數(shù)學(xué)公式-a(a∈R,a≠0)在x=3處的切線(xiàn)方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線(xiàn)g(x)上的任意一點(diǎn)處的切線(xiàn)與直線(xiàn)x=0和直線(xiàn)y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實(shí)數(shù)m,k,使得f(x)+f(m-x)=k對(duì)于定義域內(nèi)的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三個(gè)解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年遼寧省鞍山一中高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=ax+-a(a∈R,a≠0)在x=3處的切線(xiàn)方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線(xiàn)g(x)上的任意一點(diǎn)處的切線(xiàn)與直線(xiàn)x=0和直線(xiàn)y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實(shí)數(shù)m,k,使得f(x)+f(m-x)=k對(duì)于定義域內(nèi)的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三個(gè)解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年江蘇省南通市啟東中學(xué)高三(下)5月月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=ax+-a(a∈R,a≠0)在x=3處的切線(xiàn)方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線(xiàn)g(x)上的任意一點(diǎn)處的切線(xiàn)與直線(xiàn)x=0和直線(xiàn)y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實(shí)數(shù)m,k,使得f(x)+f(m-x)=k對(duì)于定義域內(nèi)的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三個(gè)解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案