已知向量,,設(shè)函數(shù),.

(Ⅰ)求的最小正周期與最大值;

(Ⅱ)在中, 分別是角的對邊,若的面積為,求的值.

 

【答案】

(Ⅰ)的最小正周期為 ,的最大值為5;(Ⅱ) .

【解析】

試題分析:(Ⅰ)求的最小正周期與最大值,首先須求出的解析式,由已知向量,,函數(shù),可將代入,根據(jù)數(shù)量積求得,進行三角恒等變化,像這一類題,求周期與最大值問題,常常采用把它化成一個角的一個三角函數(shù),即化成,利用它的圖象與性質(zhì),,求出周期與最大值,本題利用兩角和與差的三角函數(shù)公式整理成,從而求得的最小正周期與最大值;(Ⅱ)在中, 分別是角的對邊,若的面積為,求的值,要求的值,一般用正弦定理或余弦定理,本題注意到,由得,可求出角A的值,由已知,的面積為,可利用面積公式,求出,已知兩邊及夾角,可利用余弦定理求出,解此類題,主要分清邊角關(guān)系即可,一般不難.

試題解析:(Ⅰ),∴ 的最小正周期為 ,的最大值為5.

(Ⅱ)由得,,即 ,∵ , ∴,

 ,又,  即,   ∴ ,由余弦定理得,,∴    

考點:兩角和正弦公式,正弦函數(shù)的周期性與最值,根據(jù)三角函數(shù)的值求角,解三角形,考查學(xué)生的基本運算能力.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省威海市乳山一中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知向量,,設(shè)函數(shù)的圖象關(guān)于直線對稱,其中ω為常數(shù),且ω∈(0,1).
(Ⅰ)求函數(shù)f(x)的表達式;
(Ⅱ)若將y=f(x)圖象上各點的橫坐標(biāo)變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112317568593594/SYS201312021123175685935018_ST/4.png">,再將所得圖象向右平移個單位,縱坐標(biāo)不變,得到y(tǒng)=h(x)的圖象,若關(guān)于x的方程h(x)+k=0在區(qū)間上有且只有一個實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省青島市黃島開發(fā)區(qū)一中高三(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知向量,,設(shè)函數(shù),若函數(shù)g(x)的圖象與f(x)的圖象關(guān)于坐標(biāo)原點對稱.
(Ⅰ)求函數(shù)g(x)在區(qū)間[-]上的最大值,并求出此時x的值;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,A為銳角,若f(A)-g(A)=,b+c=7,△ABC的面積為2,求邊a的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶市潼南縣古溪中學(xué)高三(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知向量,,設(shè)函數(shù),x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)若,求函數(shù)f(x)值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年遼寧省沈陽市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知向量,,設(shè)函數(shù),x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)若,求函數(shù)f(x)值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三第七次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知向量,設(shè)函數(shù).

(Ⅰ)求函數(shù)的最小正周期;

(Ⅱ)在中,若的面積為,求實數(shù)的值.

 

查看答案和解析>>

同步練習(xí)冊答案