在四面體PABC中,PA=PB=PC=AB,如果PA與平面ABC所成的角等于60°,則PC與平面PAB所成的角的最大值是
 
考點:直線與平面所成的角
專題:空間角
分析:如圖所示,過點P作PO⊥平面ABC,連接OA,OB,OC.取AB的中點D,連接OD,PA.可知∠PAO是PA與平面ABC所成的角,其大小等于60°.不妨設(shè)PA=2,可得PO=
3
,PD=
3
.得到點O與D必然重合.當(dāng)且僅當(dāng)CD⊥AB時,PC與平面PAB所成的角取得最大值.
解答: 解:如圖所示,過點P作PO⊥平面ABC,
連接OA,OB,OC.取AB的中點D,連接OD,PA.
則∠PAO是PA與平面ABC所成的角,其大小等于60°.
不妨設(shè)PA=2=AB=PB=PC,則PO=
3

∴PD=
3

因此點O與D必然重合.
可知:點C在以O(shè)為圓心,AB為直徑的圓周上運動(去掉A,B兩點).
當(dāng)且僅當(dāng)CD⊥AB時,PC與平面PAB所成的角取得最大值60°.
故答案為:60°.
點評:本題考查了線面垂直的性質(zhì)、線面角、三角形的外心性質(zhì)、含30°角的直角三角形的邊角關(guān)系,考查了推理能力與計算能力,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-2|x|-3.
(1)畫出y=f(x)的圖象,并指出y=f(x)的單調(diào)遞增區(qū)間;
(2)判斷y=f(x)的奇偶性,并求y=f(x)的值域;
(3)方程f(x)=k+1有兩解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a5=5,a2+a6=8.
(1)求{an}的通項公式;
(2)若bn=an+2an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
bx+c
x+1
的圖象過原點,且關(guān)于點(-1,1)成中心對稱.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若數(shù)列{an}(n∈N*)滿足:an>0,a1=1,an+1=(f(
an
))2,求數(shù)列{an}的通項an;
(Ⅲ)若數(shù)列{an}的前項和為Sn,判斷Sn,與2的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足條件
x+y≥0
x-y+3≥0
0≤x≤3
則2x-y的最小值為( 。
A、6B、3C、0D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,M、N分別是對角線AB1、BC1上的點,且
B1M
MA
=
C1N
NB
,求證:MN∥平面A1B1C1D1(寫出三種作法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(
x
+
1
2
4x
n的展開式中前三項系數(shù)成等差數(shù)列.
(1)求展開式中所有的有理項;
(2)求展開式中二項式系數(shù)最大的項及系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2,AD=1,PD⊥底面ABCD.
(1)證明:PA⊥BD;
(2)若PD=AD,求二面角A-PB-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=|4x-x2|+2a-8至少有3個零點,則實數(shù)a的取值范圍是( 。
A、(-∞,3)
B、(-∞,3]
C、[2,3)
D、[2,3]

查看答案和解析>>

同步練習(xí)冊答案