【題目】已知函數(shù),.
(1)若,求函數(shù)在區(qū)間(其中,是自然對(duì)數(shù)的底數(shù))上的最小值;
(2)若存在與函數(shù),的圖象都相切的直線,求實(shí)數(shù)的取值范圍.
【答案】(1)見解析;(2).
【解析】
(1)根據(jù)題意得,利用導(dǎo)數(shù),分類討論求得函數(shù)的單調(diào)性,即可求解函數(shù)的最小值;
(2)設(shè)函數(shù)在點(diǎn)處與函數(shù)在點(diǎn)處有相同的切線,分別求得,利用斜率相等,轉(zhuǎn)化為方程有解,設(shè)函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值,即可求解。
(1)由題意,可得,
,
令,得.
①當(dāng)時(shí),在上單調(diào)遞減,
∴.
②當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增,
∴.
綜上,當(dāng)時(shí),,當(dāng)時(shí),.
(2)設(shè)函數(shù)在點(diǎn)處與函數(shù)在點(diǎn)處有相同的切線,
則,∴,
∴,代入
得.
∴問題轉(zhuǎn)化為:關(guān)于的方程有解,
設(shè),則函數(shù)有零點(diǎn),
∵,當(dāng)時(shí),,∴.
∴問題轉(zhuǎn)化為:的最小值小于或等于0.
,
設(shè),則
當(dāng)時(shí),,當(dāng)時(shí),.
∴在上單調(diào)遞減,在上單調(diào)遞增,
∴的最小值為.
由知,故.
設(shè),
則,故在上單調(diào)遞增,
∵,∴當(dāng)時(shí),,
∴的最小值等價(jià)于.
又∵函數(shù)在上單調(diào)遞增,∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是函數(shù)的極值點(diǎn).
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求證:函數(shù)存在唯一的極小值點(diǎn),且.
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,,四邊形滿足且,點(diǎn)為的中點(diǎn),點(diǎn)為邊上的動(dòng)點(diǎn),且.
(1)求證:平面平面;
(2)是否存在實(shí)數(shù),使得二面角的余弦值為?若存在,試求出實(shí)數(shù)的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:x2-(3+a)x+3a<0,其中a<3;q:x2+4x-5>0.
(1)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍;
(2)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方體中滿足,若點(diǎn)在棱上點(diǎn)在棱上,且.
(1)求證:;
(2)當(dāng)是的中點(diǎn)時(shí),求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)為了解居民參加體育鍛煉情況,隨機(jī)抽取18名男性居民,12名女性居民對(duì)他們參加體育鍛煉的情況進(jìn)行問卷調(diào)查.現(xiàn)按參加體育鍛煉的情況將居民分成3類:甲類(不參加體育鍛煉),乙類(參加體育鍛煉,但平均每周參加體育鍛煉的時(shí)間不超過5個(gè)小時(shí)),丙類(參加體育鍛煉,且平均每周參加體育鍛煉的時(shí)間超過5個(gè)小時(shí)),調(diào)查結(jié)果如下表:
(1)根據(jù)表中的統(tǒng)計(jì)數(shù)據(jù),完成下面列聯(lián)表,并判斷是否有的把握認(rèn)為參加體育鍛煉與性別有關(guān)?
(2)從抽出的女性居民中再隨機(jī)抽取3人進(jìn)一步了解情況,記為抽取的這3名女性居民中甲類和丙類人數(shù)差的絕對(duì)值,求的數(shù)學(xué)期望.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測(cè)量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對(duì)應(yīng)相同的是
A. 眾數(shù) B. 平均數(shù) C. 中位數(shù) D. 標(biāo)準(zhǔn)差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣x2+ax,a∈R.
(Ⅰ)證明lnx≤x﹣1;
(Ⅱ)若a≥1,討論函數(shù)f(x)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中有如下問題:今有蒲生一日,長(zhǎng)三尺,莞生一日,長(zhǎng)1尺.蒲生日自半,莞生日自倍.問幾何日而長(zhǎng)等?意思是:今有蒲第一天長(zhǎng)高3尺,莞第一天長(zhǎng)高1尺,以后蒲每天長(zhǎng)高前一天的一半,莞每天長(zhǎng)高前一天的2倍.若蒲、莞長(zhǎng)度相等,則所需時(shí)間為( 。
(結(jié)果精確到0.1.參考數(shù)據(jù):lg2=0.3010,lg3=0.4771.)
A. 天B. 天C. 天D. 天
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com