已知集合A={x|-1<x<5},B={x|
x-24-x
>0}
,在集合A中任取一個元素x,則事件“x∈A∩B”的概率是
 
分析:先化簡集合B,求出A∩B,再利用幾何概型的意義求解.
解答:解:B={x|2<x<4},∴A∩B={x|2<x<4},
∴事件“x∈A∩B”的概率是
4-2
5-(-1)
=
1
3

故填
1
3
;
點(diǎn)評:長度型的幾何概型的概率計算公式是,事件d對應(yīng)的長度/整個事件D對應(yīng)的長度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|
x-2ax-(a2+1)
<0},B={x|x<5a+7},若A∪B=B
,則實數(shù)a的值范圍是
[-1,6]
[-1,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x
log
1
2
(x+2)>-3
x2≤2x+15
,B={x|m+1≤x≤2m-1}

(I)求集合A;
(II)若B⊆A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|0<x2-x≤2},B={x|x2-x+a(1-a)≤0}.
(1)求集合A;
(2)若B∪A=[-1,2],求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+(a+2)x+1=0,x∈R},B={x|lg(x+1)>0},若A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+3x-18>0},B={x|x2-(k+1)x-2k2+2k≤0},若A∩B≠∅,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案