【題目】如圖,在多面體中,已知四邊形為矩形,為平行四邊形,點(diǎn)在平面內(nèi)的射影恰好為點(diǎn),的中點(diǎn)為,的中點(diǎn)為,且.
(1)求證:平面平面;
(2)求三棱錐的體積.
【答案】(1)證明過程如解析所示;(2)
【解析】試題分析:(1)由點(diǎn)E在平面ABCD內(nèi)的射影恰為A,可得AE⊥平面ABCD,進(jìn)一步得到平面ABCD⊥平面ABEG,又以BD為直徑的圓經(jīng)過A,C,AD=AB,可得BCD為正方形,再由線面垂直的性質(zhì)可得BC⊥平面ABEG,從而得到EF⊥BC,結(jié)合AB=AE=GE,可得∠ABE=∠AEB=,從而得到∠AEF+∠AEB=,有EF⊥BE.再由線面垂直的判定可得EF⊥平面BCE,即平面EFP⊥平面BCE;(2) 連接DE,由(Ⅰ)知,AE⊥平面ABCD,則AE⊥AD,又AB⊥AD,則AB⊥平面ADE,得到GE⊥平面ADE.然后利用等積法求幾何體ADC-BCE的體積.
試題解析:(1)證明:∵點(diǎn)在平面內(nèi)的射影恰好為點(diǎn),∴平面,
又平面,∴平面平面.
∵為矩形,又平面平面,∴平面.
∵平面,,又,∴,
又的中點(diǎn)為,∴,
∵,∴,
又,∴平面.
又平面,∴平面平面.
(2)∵平面,的中點(diǎn)為,為平行四邊形,,
∴三棱錐的高為,
又,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,圓、橢圓均經(jīng)過點(diǎn)M,圓的圓心為,橢圓的兩焦點(diǎn)分別為.
(Ⅰ)分別求圓和橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過作直線與圓交于、兩點(diǎn),試探究是否為定值?若是定值,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高一年級隨機(jī)抽取了名學(xué)生第一學(xué)期的數(shù)學(xué)學(xué)期綜合成績和物理學(xué)期綜合成績.
列表如下:
學(xué)生序號 | ||||||||||
數(shù)學(xué)學(xué)期綜合成績 | ||||||||||
物理學(xué)期綜合成績 | ||||||||||
學(xué)生序號 | ||||||||||
數(shù)學(xué)學(xué)期綜合成績 | ||||||||||
物理學(xué)期綜合成績 |
規(guī)定:綜合成績不低于分者為優(yōu)秀,低于分為不優(yōu)秀.
對優(yōu)秀賦分,對不優(yōu)秀賦分,從名學(xué)生中隨機(jī)抽取名學(xué)生,若用表示這名學(xué)生兩科賦分的和,求的分布列和數(shù)學(xué)期望;
根據(jù)這次抽查數(shù)據(jù),列出列聯(lián)表,能否在犯錯誤的概率不超過的前提下認(rèn)為物理成績與數(shù)學(xué)成績有關(guān)?
附: ,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修:坐標(biāo)系與參數(shù)方程選講.
在平面直角坐標(biāo)系中,曲線(為參數(shù),實(shí)數(shù)),曲線
(為參數(shù),實(shí)數(shù)). 在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,射線與交于兩點(diǎn),與交于兩點(diǎn). 當(dāng)時, ;當(dāng)時, .
(1)求的值; (2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知偶函數(shù)f(x)在區(qū)間[0,+∞)單調(diào)遞減,則滿足 的實(shí)數(shù)x的取值范圍是( )
A.( , )
B.[ , )
C.( , )
D.[ , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的極大值是函數(shù)的極小值的倍,并且,不等式恒成立,則實(shí)數(shù)的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若時,求函數(shù)的單調(diào)區(qū)間;
(2)試討論函數(shù)在區(qū)間上的零點(diǎn)的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)方程為.
(1)求點(diǎn)的直角坐標(biāo),并求曲線的普通方程;
(2)設(shè)直線與曲線的兩個交點(diǎn)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x+2.
(1)求f(x)單調(diào)區(qū)間
(2)求f(x)在區(qū)間[ ,3]上的最大值和最小值;
(3)若g(x)=f(x)﹣mx在[2,4]上是單調(diào)函數(shù),求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com