精英家教網(wǎng)如圖,在平行六面體ABCD-A1B1C1D1中,底面是邊長(zhǎng)為2的正方形,若∠A1AB=∠A1AD=60°,且A1A=3,則A1C的長(zhǎng)為( 。
A、
5
B、2
2
C、
14
D、
17
分析:點(diǎn)A1在底面的投影O在底面正方形對(duì)角線AC上,過(guò)A1作A1E⊥AB于E,求出AE,連結(jié)OE,則OE⊥AB,∠EAO=45°,在Rt△AEO,求出OC,然后求解A1O,即可求解A1C.
解答:解:由已知可得點(diǎn)A1在底面的投影O在底面正方形對(duì)角線AC上,
過(guò)A1作A1E⊥AB于E,
在Rt△AEA1,AA1=3,∠A1AE=60°
AE=
3
2
,連結(jié)OE,則OE⊥AB,∠EAO=45°,
在Rt△AEO中,AO=
3
2
2
,又AC=2
2
∴OC=
2
2
,
Rt△AOA1,AA1=3,AO=
3
2
2
,∴A1O=
3
2
2
,
Rt△A1OC,A1C=
A1O2+OC2
=
5

故選A.
點(diǎn)評(píng):本題考查幾何法求解空間兩點(diǎn)的距離,也可以利用空間向量的模求解距離,考查計(jì)算能力與邏輯推理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖:在平行六面體ABCD-A1B1C1D1中,M為A1C1與B1D1的交點(diǎn).若
AB
=
a
,
AD
=
b
,
AA1
=
c
,則下列向量中與
BM
相等的向量是( 。
A、-
1
2
a
+
1
2
b
+
c
B、
1
2
a
+
1
2
b
+
c
C、-
1
2
a
-
1
2
b
+
c
D、
1
2
a-
1
2
b+c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平行六面體ABCD-A1B1C1D1中,已知
AB
=a
,
AD
=b
AA1
=c
,則用向量
a
b
,
c
可表示向量
BD1
=(  )
A、
a
+
b
+
c
B、
a
-
b
+
c
C、
a
+
b
-
c
D、-
a
+
b
-
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)對(duì)于向量a,b,定義a×b為向量a,b的向量積,其運(yùn)算結(jié)果為一個(gè)向量,且規(guī)定a×b的模|a×b|=|a||b|sinθ(其中θ為向量a與b的夾角),a×b的方向與向量a,b的方向都垂直,且使得a,b,a×b依次構(gòu)成右手系.如圖,在平行六面體ABCD-EFGH中,∠EAB=∠EAD=∠BAD=60°,AB=AD=AE=2,則(
AB
×
AD
)•
AE
=( 。
A、4
B、8
C、2
2
D、4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平行六面體ABCD-A1B1C1D1中,若
AB
=
a
,
AD
=
b
,
AA1
=
c
,則
D1B
=( 。
A、
a
+
b
-
c
B、
a
+
b
+
c
C、
a
-
b
-
c
D、-
a
+
b
+
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2001•上海)如圖,在平行六面體ABCD-A1B1C1D1中,M為AC與BD的交點(diǎn),若
A1B1
=
a
A1D1
=
b
,
A1A
=
c
.則下列向量中與
B1M
相等的向量是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案