已知,且sin(2α+β)=3cos(α+β)sinα,,求α+β的值.
【答案】分析:第一個等式中將sin(2α+β)變形為sin[(α+β)+α],利用兩角和與差的正弦函數(shù)公式化簡,第二個等式變形后利用二倍角的正切函數(shù)公式化簡,求出tanα的值,進(jìn)而求出tan(α+β)的值,根據(jù)α與β的范圍求出α+β的范圍,利用特殊角的三角函數(shù)值即可求出α+β的度數(shù).
解答:解:∵sin(2α+β)=sin[(α+β)+α]=sin(α+β)cosα+cos(α+β)sinα=3cos(α+β)sinα,
∴sin(α+β)cosα=2cos(α+β)sinα,即tan(α+β)=2tanα,
∵4tan=1-tan2,
=,即tanα=,
∴tan(α+β)=2tanα=1,
∵α∈[0,],β∈[0,],
∴α+β∈[0,],
則α+β=
點(diǎn)評:此題考查了二倍角的余弦函數(shù)公式,半角的三角函數(shù),以及兩角和與差的正弦函數(shù)公式,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinθ,-2),
b
=(1,cosθ)
,且
a
b
,則sin2θ+cos2θ的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(sinα,-2),
b
=(1,cosα),且
a
b

(1)求cos2α-sinαcosα的值;
(2)若α∈(0,
π
2
)
,β∈(-
π
2
,0)
,且cos(α-β)=-
10
10
,求β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=[sin(x+
θ
2
)+
3
cos(x+
θ
2
)]•cos(x+
θ
2
)
.若θ∈[0,π]且f(x)為偶函數(shù),求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:吉林省期中題 題型:解答題

已知,且sinα與cosα是關(guān)于x的一元二次方程的兩根.
(1)求tanα的值;
(2)求的值。

查看答案和解析>>

同步練習(xí)冊答案