(本小題滿分14分)
已知函數(shù).
(1)求證:函數(shù)在上是單調(diào)遞增函數(shù);
(2)當(dāng)時,求函數(shù)在上的最值;
(3)函數(shù)在上恒有成立,求的取值范圍.
(1) 函數(shù)在上是單調(diào)遞增函數(shù). (2) 的最小值為,此時;無最大值. (3) 的取值范圍是.
【解析】
試題分析:(1)證明函數(shù)在上是單調(diào)遞增函數(shù)本質(zhì)就是證明在上恒成立.
(2)當(dāng)時,令,然后得到極值點(diǎn),進(jìn)而求出極值,再與值比較從而得到f(x)的最大值與最小值.
(3) 函數(shù)在上恒有成立問題應(yīng)轉(zhuǎn)化為,
然后利用導(dǎo)數(shù)研究f(x)在區(qū)間[1,2]的極值,最值即可求出其最小值,問題得解.
(1)(法一:定義法)
任取且,則. ········1分
∵,
∴. ·······3分
∴ 函數(shù)在上是單調(diào)遞增函數(shù). ········4分
(法二:導(dǎo)數(shù)法)
當(dāng),
∴ 函數(shù)在上是單調(diào)遞增函數(shù). ········4分
(2) 當(dāng)時,;
由(1)知函數(shù)在上是單調(diào)遞增函數(shù). ·······5分
∴,即 ·······7分
∴ 的最小值為,此時;無最大值. ·······8分
(3) 依題意, ,即在上恒成立.
∵函數(shù)在上單調(diào)遞減,∴ ······11分
∴ ,
又. ∴
故的取值范圍是. ·······14分
考點(diǎn):導(dǎo)數(shù)在研究函數(shù)單調(diào)性,極值,最值當(dāng)中的應(yīng)用.
點(diǎn)評:(1)連續(xù)可導(dǎo)函數(shù)在某個區(qū)間I上單調(diào)遞增(減)等價于在區(qū)間I上恒成立.
(2)在求某個區(qū)間上的最值時,應(yīng)先求出極值,然后從極值與區(qū)間端點(diǎn)對應(yīng)的函數(shù)值當(dāng)中找到最大值和最小值.
(3)不等式恒成立問題一般要轉(zhuǎn)化為函數(shù)最值來研究.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點(diǎn),當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com