【題目】設函數(shù),其中為常數(shù).

1)當時,求證:有且僅有一個零點;

2)若函數(shù)在定義域內(nèi)既有極大值,又有極小值,求的取值范圍.

【答案】1)證明見解析 2

【解析】

1)利用導數(shù)求出函數(shù)的單調(diào)性和極值,結(jié)合極值的大小即可證出有且僅有一個零點;

2)因為函數(shù)在定義域內(nèi)既有極大值,又有極小值,所以有兩個正根,再利用根與系數(shù)的關系即可求出的取值范圍.

1,,

,得,

列表如下:

1

2

+

0

0

+

極大值

極小值

因為極大值,所以無零點,從而在無零點,

又因為,,所以有零點,因為單調(diào)遞增,所以有唯一零點,即有且僅有一個零點;

2,

∵函數(shù)在定義域內(nèi)既有極大值,又有極小值,∴有兩個正根,

有兩個正根、,

所以,

解得,

的取值范圍為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】每年的423日為世界讀書日,某調(diào)查機構(gòu)對某校學生做了一個是否喜愛閱讀的抽樣調(diào)查.該調(diào)查機構(gòu)從該校隨機抽查了100名不同性別的學生(其中男生45名),統(tǒng)計了每個學生一個月的閱讀時間,其閱讀時間(小時)的頻率分布直方圖如圖所示:

1)求樣本學生一個月閱讀時間的中位數(shù).

2)已知樣本中閱讀時間低于的女生有30名,請根據(jù)題目信息完成下面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.1的前提下認為閱讀與性別有關.

列聯(lián)表

總計

總計

附表:

0.15

0.10

0.05

2.072

2.706

3.841

其中:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示為一名曰塹堵的幾何體,已知 AE⊥底面BCFE , DF AE , DF = AE = 1, CE =,四邊形ABCD 是正方形.

1)《九章算術(shù)》中將四個面都是直角三角形的四面體稱為鱉臑.判斷四面體 EABC 是否為鱉臑,若是,寫出其 每一個面的直角,并證明;若不是,請說明理由.

2)求四面體 EABC 的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)中國生態(tài)環(huán)境部公布的2017年、2018年長江流域水質(zhì)情況監(jiān)測數(shù)據(jù),得到如下餅圖:

則下列說法錯誤的是(

A.2018年的水質(zhì)情況好于2017年的水質(zhì)情況

B.2018年與2017年相比較,Ⅰ、Ⅱ類水質(zhì)的占比明顯增加

C.2018年與2017年相比較,占比減小幅度最大的是Ⅳ類水質(zhì)

D.2018年Ⅰ、Ⅱ類水質(zhì)的占比超過

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且與雙曲線有相同的焦點.

1)求橢圓的方程;

2)直線與橢圓相交于,兩點,點滿足,點,若直線斜率為,求面積的最大值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)設函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當函數(shù)有最大值且最大值大于時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)已知,若函數(shù)沒有零點,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)在區(qū)間上存在零點,則實數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某產(chǎn)品的銷售額與廣告費用之間的關系如下表:

(單位:萬元)

0

1

2

3

4

(單位:萬元)

10

15

30

35

若根據(jù)表中的數(shù)據(jù)用最小二乘法求得的回歸直線方程為,則下列說法中錯誤的是(

A.產(chǎn)品的銷售額與廣告費用成正相關

B.該回歸直線過點

C.當廣告費用為10萬元時,銷售額一定為74萬元

D.的值是20

查看答案和解析>>

同步練習冊答案