已知0<θ<π,tan(θ+)=,那么sinθ+cosθ=( )
A.-
B.
C.-
D.
【答案】分析:利用兩角和與差的正切函數(shù)公式即特殊角的三角函數(shù)值化簡已知等式的左邊,整理后得到tanθ的值小于0,再由θ的范圍,得到sinθ大于0,cosθ小于0,利用同角三角函數(shù)間的基本關(guān)系求出sinθ及cosθ的值,即可求出sinθ+cosθ的值.
解答:解:∵tan(θ+)==,即7tanθ+7=1-tanθ,
∴tanθ=-,
又0<θ<π,tanθ=<0,
∴sinθ>0,cosθ<0,
∴cosθ=-=-,sinθ==,
則sinθ+cosθ=-
故選A
點(diǎn)評:此題考查了兩角和與差的正切函數(shù),以及同角三角函數(shù)間的基本關(guān)系,熟練掌握公式及基本關(guān)系是解本題的關(guān)鍵,同時(shí)注意角度的范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)單位向量
a
b
的夾角為60°,
c
=t
a
+(1-t)
b
.若
b
c
=0,則t=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)單位向量
a
,
b
的夾角為60°,
c
=t
a
+(1-t)
b
,若
b
c
=0
,則實(shí)數(shù)t=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
,-1)
,
b
=(
1
2
3
2
)
,
(I)求與
a
平行的單位向量
c
;
(II)設(shè)
x
=
a
 +(t2+3)
b
,
y
=-k•t
a
+
b
,若存在t∈[0,2]使得
x
y
成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•嘉定區(qū)一模)如圖,已知橢圓
x2
16
+
y2
7
=1
的左、右頂點(diǎn)分別為A、B,右焦點(diǎn)為F.設(shè)過點(diǎn)T(t,m)的直線TA、TB與橢圓分別交于點(diǎn)M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1)設(shè)動點(diǎn)P滿足|PF|2-|PB|2=3,求點(diǎn)P的軌跡;
(2)若x1=3,x2=
1
2
,求點(diǎn)T的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•徐州一模)如圖,已知拋物線C:y2=4x的焦點(diǎn)為F,過F的直線l與拋物線C交于A(x1,y1)(y1>0),B(x2,y2)兩點(diǎn),T為拋物線的準(zhǔn)線與x軸的交點(diǎn).
(1)若
TA
TB
=1
,求直線l的斜率;
(2)求∠ATF的最大值.

查看答案和解析>>

同步練習(xí)冊答案